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Problem statement

We consider the problem of learning an H-invariant function f : X → R, where X = [0, 1]n ⊂
Rn and H is the unknown subgroup of Sn. In general, learning such a function is intractable.

However, we show that it is possible to learn such a function, i.e., discover the underlying

subgroup H , where H belongs to a certain class of subgroups.

Method

We propose a general framework, i.e.,G-invariant network and a linear transformation for discov-

ering the underlying subgroup of Sn under certain conditions. Since any givenG can have several

such subgroups, we propose to learn the underlying subgroup H by exploiting the existing struc-

tures using a family of G-invariant functions (as mentioned in [2] for the permutation group Sn)
and a learnable linear transformation.

Deep Sets

f : X = [0, 1]n → R is a permutation invariant (Sn-invariant) continuous function if it has the

representation [2] given as follows:

f (x) = ρ

 n∑
i=1

γ(xi)

 , x = [x1, x2, . . . xn]T

for some continuous outer and inner functions ρ : Rn+1 → R, γ : [0, 1] → Rn+1.

Sk - Invariance

Any Sk-invariant function (k ≤ n) ψ, can be realised using an Sn-invariant function and a linear

transformation, in specific, it can be realised through:

ψ(x) =
(
φ · M̂

)
(x) = ρ

([
(I −M)x∑n
i=1 γ

(
mT
i x
)])

where M̂ =
[
I −M
M

]
and φ(y) =

[
y1, . . . , yn,

∑n
i=1 γ(yn+i)

]T

Zk( orD2k) - Invariance

If k|n, any Zk-invariant (or D2k-invariant) function ψ, can be realised using a Zn-invariant (or
D2n-invariant) function φ and a linear transformation, can be realised as follows:

ψ(x) =
(
φ · M̂

)
(x), where M̂ =

[
M

I − L

]
for someM,L ∈ Rn×n.

General Invariance

Any H-invariant function ψ can be learnt through composing a G-invariant function φ with a

linear transformationM , i.e., ψ = φ ·M if the following conditions hold,

1. For any h ∈ H, ∃g ∈ G such thatM(h · x) = g · (Mx) , ∀x ∈ X
2. For any g ∈ G such that g · (Mx) ∈ R(M), ∃h ∈ H such thatM(h · x) = g · (Mx) , ∀x ∈ X ,

where R(M) is the range ofM .

Overview

The general invariance result presents a set of conditions to be satisfied to learn anyH-invariant

function using aG invariant function and a linear transformation. As such, the previous results are

specific cases of this result. However, they provide explicit structures of the linear transformation

M . These can help design appropriate training techniques to learn the optimumM .

1. We show that we could learn any conjugate group (with respect to G) via a linear
transformation and G-invariant network.

2. We extend this approach, i.e., a linear transformation and G-invariant network to different

classes of subgroups such as permutation group of k (out of n) elements Sk, cyclic subgroups
Zk and dihedral subgroups D2k.

3. We prove a general theorem that can guide us to discover other classes of subgroups.

Interpretability

Figure 1.M Matrices for S5 (a) and S9 (b) after training. M matrix for Z4 : Z16(c) and Reference matrix (d).

The resulting M matrix is interpretable, and we consistently observe the expected pattern for the

image-digit sum task. Note: Any row-permuted version of the matrix structure will work since

the transformed space is still homeomorphic.

We observe that the M-matrix does not represent a stack of I matrices even though it nearly

masks most of the irrelevant columns (n−k). The former behavior (lack of exact structure) explains

the difference in performance with respect to the Zk-invariant network, while the latter (masking

behavior) describes the superior model performance compared to other baselines.

Explicit Linear Transformations

Figure 2. Linear transformations used for Sk, Zk and D2k-invariant functions.

Results

Symmetric Polynomial Regression: We evaluate the performance of our method on symmetric

polynomial regression tasks as discussed in [1], primarily for subgroups of Z10 and Z16. For all our
experiments, we utilize a Zn-invariant neural network with a Sum-Product layer as discussed in

[1] and a linear layer.

Table 1. MAE [×10−2] for Z5 : Z10

Method Train Validation Test

Z5-invariant 2.65 ± 0.91 7.32 ± 0.55 7.53 ± 0.576
Proposed 4.48 ± 1.25 24.56 ± 6.93 24.78 ± 6.45
Conv-1D 20.90 ± 4.91 32.96 ± 1.31 32.33 ± 1.18
Simple-FC 23.86 ± 3.87 33.57 ± 2.07 33.14 ± 2.11

Image-Digit Sum: This task aims to find the sum of k digits using the MNISTm dataset. Our

method outperforms the each of the baseline networks for any given subgroups. We observe

that the proposed method outperforms the LSTM baseline and is competitive with respect to the

Deep Sets method (k input images) when the underlying subgroup Sk is known.

Table 2. MAE [×10−2] for Image Digit-Sum task

Method S1 S3 S5 S7 S9
Deep Sets-Sk 5.61 ± 0.35 7.66 ± 0.26 8.02 ± 0.2 7.68 ± 0.43 6.97 ± 0.39
Proposed 5.73 ± 0.39 7.78 ± 0.49 8.19 ± 0.36 7.84 ± 0.41 7.26 ± 0.58
LSTM 6.23 ± 0.53 9.65 ± 0.57 11.98 ± 0.46 13.35 ± 1.02 12.92 ± 1.42

Limitations

Information regarding broader caterory of the subgroup is required apriori.

Have to choose appropriate value for n.
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