



## **Problem statement**

We consider the problem of learning an *H*-invariant function  $f: X \to \mathbb{R}$ , where  $X = [0, 1]^n \setminus E$ ,  $E = \left\{ [x_1, x_2 \dots, x_n]^T \in [0, 1]^n : x_i = x_j \text{ for some } i, j \in [n] \text{ with } i \neq j \right\} \text{ and } H \text{ is the unknown}$ subgroup of  $S_n$ , i.e.,  $H \in \bigcup_{\mathcal{I} \subseteq [n], |\mathcal{I}| > 1} \{\mathbb{Z}_{\mathcal{I}}, D_{\mathcal{I}}, S_{\mathcal{I}}\}$ . In particular, we develop a unified framework to automatically discover the data symmetry across a broad range of subgroups by leveraging the multi-armed bandits (MAB) and gradient descent method (SGD).

# Theorem: Learning $\mathbb{Z}_k$ -invariant function

Let  $\psi: [0,1]^k \to \mathbb{R}$  be  $\mathbb{Z}_k$ -invariant. There exists an  $S_k$ -invariant function  $\phi: [0,1]^{k \times 2} \to \mathbb{R}$  and  $\rho: [0,1]^k \rightarrow [0,1]^{k \times 2}$ , such that  $\psi = \phi \circ \rho,$ 

where  $\rho$  is defined as:

 $\begin{bmatrix} x_1 \dots x_k \end{bmatrix} \mapsto \begin{bmatrix} (x_1, x_2), (x_2, x_3), \dots, (x_k, x_1) \end{bmatrix}$ 

**Regularity:**  $\phi$  is continuous  $(C^0)$  or smooth  $(C^\infty)$  whenever  $\psi$  is  $C^0$  or  $C^\infty$  respectively.

**Note:** Similar results hold for  $\psi$  as a  $D_{2k}$  or  $S_k$ -invariant function, with modifications to the definition of the function  $\rho$  as described in the table below.

## **Matrix-Valued Function**

|       | $ S_k $                                                         | $\mathbb{Z}_k$                                                              | $D_{2k}$                                                                                               |  |
|-------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| ho(x) | $\begin{bmatrix} : \\ x_i & x_i \\ : \end{bmatrix}_{i \in [k]}$ | $\begin{bmatrix} & : \\ x_i & x_{\tau(i)} \\ & : \end{bmatrix}_{i \in [k]}$ | $\begin{bmatrix} \vdots \\ x_i & x_{\tau(i)} \\ x_{\tau(i)} & x_i \\ \vdots \end{bmatrix}_{i \in [k]}$ |  |

Table 1. Subgroups of  $S_n$  and corresponding definitions of the matrix-valued function  $\rho$ , where  $\tau$  is cyclic right shift by 1 element.



- . Our framework: G-invariant network with linear  $(M_1, M_2)$ , matrix-valued  $\rho$ , and non-linear  $\phi$ functions.
- 2. Explicit characterization of  $(M_1, M_2)$  matrices for various subgroups.
- 3. Efficient training algorithm: MAB with SGD leveraging specific structures.
- 4. Optimal  $(M_1, M_2)$  search: linear parametric Thompson Sampling (LinTS).
- 5.  $\phi$  function approximation: neural network learned through SGD.

# A Unified Framework for Discovering Discrete Symmetries

Pavan Karjol, Rohan Kashyap, Aditya Gopalan, Prathosh A P

Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru, Karnataka

# **Theorem: Unified Framework**

Let 
$$\mathcal{B}$$
 denote the class of all functions from  $X \to \mathbb{R}$  of the  $\int \int (M_2 \circ \rho \circ M_1) (M_2 \circ \rho \circ M_1) d\rho$ 

 $x \mapsto \phi \left( \left| \begin{array}{c} (M_2 \circ \rho \circ M_1) (x) \\ (I - M_1) ([x \ \mathbf{0}]) \end{array} \right| \right)$ 

where,

- $M_1$  and  $M_2$  are matrices of size  $n \times n$  and  $n^2 \times n^2$  respectively.
- $\phi: [0,1]^{n(n+1)\times 2} \to \mathbb{R}$  is an  $S_{n^2}$ -invariant function where the invariance pertains to the initial  $n^2$  rows out of a total of n(n+1).
- $\rho: X \to [0,1]^{n^2 \times 2}$  is a matrix-valued function given as:

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \mapsto \begin{bmatrix} \vdots \\ x_i & x_j \\ \vdots \end{bmatrix}_{i,j}$$

Let  $\mathcal{I} = \{i_1, i_2, \dots i_k\} \subseteq [n] \ (k > 1)$  and  $\tau$  be the permutation (cyclic shift). Then, the following hold:

a) Any  $S_{\mathcal{I}}$ -invariant function belongs to  $\mathcal{B}$ . Moreover, the matrices  $M_1$  and  $M_2$  in its decomposition have the forms:

$$M_{1}[u, v] = \begin{cases} 1, & \text{if } u \in [k] \text{ and} \\ 0, & \text{otherwise.} \end{cases}$$
$$M_{2}[u, v] = \begin{cases} 1, & \text{if } u \in [k^{2}], \\ (\rho \circ M_{1}) (x)[v] \\ \text{for some } i \in \\ 0, & \text{otherwise.} \end{cases}$$

b) Any  $\mathbb{Z}_{\mathcal{T}}$ -invariant function belongs to  $\mathcal{B}$ . Moreover,  $M_1$  is of the form as given above and  $M_2$  is as follows:

$$M_2[u,v] = \begin{cases} 1, & \text{if } u \in [k] \text{ and} \\ & (\rho \circ M_1) (x)[v] = \\ 0, & \text{otherwise.} \end{cases}$$

c) Any  $D_{\mathcal{I}}$ -invariant function belongs to  $\mathcal{B}$ . Moreover,  $M_1$  is of the form as given in part (a) and (b) and  $M_2$  is as follows:

$$M_{2}[u, v] = \begin{cases} 1, & \text{if } u \in [k] \text{ and} \\ (\rho \circ M_{1})(x)[v] = 0 \\ 1, & \text{else if } u \in [2k] \setminus \\ (\rho \circ M_{1})(x)[v] = 0 \\ 0, & \text{otherwise.} \end{cases}$$

# **Theorem: Product Groups**

Let  $[n] = \bigcup \mathcal{I}_j$  be a partition of  $[n], G_i \in \{S_{\mathcal{I}_j}, D_{\mathcal{I}_j}, \mathbb{Z}_{\mathcal{I}_j}\}, \forall j \in [L] \text{ and } G = G_1 \times G_2 \times \cdots \oplus G_L$ 

such that no two groups  $G_i, G_j$  are isomorphic and only one of the component groups is of the type  $S_{\mathcal{I}}$ . Let  $\psi$  be a G-invariant function, then there exists an  $S_l$ -invariant function  $\phi$  and a specific matrix-valued function  $\rho$ , such that,

$$\psi = \phi \circ \rho.$$

the form:

d  $v = i_u$ 

u = v and  $\mathbf{v}] = (x_i, x_i)$ 

 $=(x_{i_u},x_{\tau(i_u)})$ 

 $(x_{i_u}, x_{\tau(i_u)})$ [k] and  $(x_{\tau(i_{u-k})}, x_{i_{u-k}})$ 

# Theorem: Error probability bound for LinTS

Let the set of arms  $\mathcal{A} \subset \mathbb{R}^d$  be finite. Suppose that the reward from playing an arm  $a \in \mathcal{A}$  at any iteration, conditioned on the past, is sub-Gaussian with mean  $a^{\top}\mu^{\star}$ . After T iterations, let the guessed best arm  $A_T$  be drawn from the empirical distribution of all arms played in the Trounds, i.e.,  $\mathbb{P}[A_T = a] = \frac{1}{T} \sum_{t=1}^{T} \mathbf{1}\{a^{(t)} = a\}$  where  $a^{(t)}$  denotes the arm played in iteration t. Then,  $\mathbb{P}[A_T \neq a^*] \leq \frac{c \log(T)}{T}$ , where  $c \equiv c(\mathcal{A}, \mu^*, \nu)$  is a quantity that depends on the problem instance  $(\mathcal{A}, \mu^{\star})$  and algorithm parameter  $(\nu)$ .



Figure 1. Visualization of reference (bandit) matrices  $M_1$  (a) and  $M_2$  (b), along with those obtained through training our method entirely using SGD for polynomial regression of  $\mathbb{Z}_{\mathcal{I}}$ -invariant functions. n = 10 and  $\mathcal{I} = \{0, 2, 3, 6, 7\}$  (c d)

**Symmetric Polynomial Regression**: We evaluate the performance of our method on symmetric polynomial regression tasks for subgroups  $\mathbb{Z}_{\mathcal{I}}, D_{\mathcal{I}}, S_{\mathcal{I}}$ . We experiments with different values of  $k = |\mathcal{I}| (k < n, n = 10)$  and randomly sampled index sets  $\mathcal{I}$ . These accuracies indicate the successful identification of the underlying subgroup within the top 3 bandit arms.

 Table 2. Model Accuracy [%]

| Task                  | G                          | Accur |
|-----------------------|----------------------------|-------|
| Polynomial Regression | $\mathbb{Z}_{\mathcal{I}}$ | 100   |
| Polynomial Regression | $D_{\mathcal{I}}$          | 100   |
| Image-Digit Sum       | $S_{\mathcal{I}}$          | 100   |
| Convex Area           | $D_{\mathcal{I}}$          | 100   |
| $S_{\mathcal{I}}$ (4) | $S_{\mathcal{I}}$          | 100   |

**Image-Digit Sum**: This task aims to sum the digits of k images from a set of n input images. The positions of the images are fixed but unknown to the model, as is the value of k. Thus, it corresponds to learning an  $S_{\mathcal{T}}$ -invariant function.

Our framework is a proof of concept. Further extensive experiments are needed, and it's only applicable for discrete groups. The complete collection of all possible permutation subgroups discoverable through our method is unknown.

1 Pavan Karjol, Rohan Kashyap, and AP Prathosh. Neural discovery of permutation subgroups. 2 Piotr Kicki, Mete Ozay, and Piotr Skrzypczyński. A computationally efficient neural network invariant to the action of symmetry subgroups.



## Interpretability

#### Results

Table 3. MAE  $[\times 10^{-2}]$  Regression task

| acy | G                          | $\mathbb{Z}_{\mathcal{I}}(5)$ | $\mathbb{Z}_{\mathcal{I}}(7)$ | $D_{\mathcal{I}}(5)$ | $D_{\mathcal{I}}(7)$ |
|-----|----------------------------|-------------------------------|-------------------------------|----------------------|----------------------|
|     | $\mathbb{Z}_{\mathcal{I}}$ | 4.2                           | 6.1                           | 8.2                  | 15.2                 |
|     | $D_{\mathcal{I}}$          | 4.7                           | 7.9                           | 6.3                  | 10.1                 |
|     | $S_{\mathcal{I}}^{-}$      | 11.7                          | 18.5                          | 21.3                 | 34.3                 |
|     | $\bar{M} + H$ -INV         | 12.3                          | _                             | 23.2                 | _                    |
|     | SGD                        | 14.4                          | 17.7                          | 26.5                 | 34.4                 |

### Limitations

## References