A Unified Framework for Discovering Discrete Symmetries
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Theorem: Unified Framework

Theorem: Error probability bound for LInTS

We consider the problem of learning an H-invariant function f : X — R, where X = [0, 1]"\ F,
E = {[331,332 ozl e 0,17z = x; for some 4, j € [n] with i # j} and H is the unknown
subgroup of Sy, i.e., H € Uz 751121, Dz, 57} In particular, we develop a unified frame-

work to automatically discover the data symmetry across a broad range of subgroups by lever-
aging the multi-armed bandits (MAB) and gradient descent method (SGD).

Theorem: Learning Z;-invariant function

Let ¢ : [0,1]* — R be Zg-invariant. There exists an Si-invariant function ¢ : [0, 1]¥*2 — R and
p:[0,1]F — [0,1]%*2, such that

v =¢op,
where p is defined as:

[xl . xk] — [(xl, r9), (x2,23), ... ... (g, xl)]

Regularity: ¢ is continuous (CO) or smooth (C*) whenever 1 is CV or C* respectively.

Note: Similar results hold for ¥ as a Do or Si-invariant function, with modifications to the
definition of the function p as described in the table below.

Matrix-Valued Function

Table 1. Subgroups of \S,, and corresponding definitions of the matrix-valued function p, where 7 is cyclic right shift
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Our framework: G-invariant network with linear (M1, M>), matrix-valued p, and non-linear ¢
functions.

Explicit characterization of (M7, My) matrices for various subgroups.
Efficient training algorithm: MAB with SGD leveraging specific structures.
Optimal (M, M>) search: linear parametric Thompson Sampling (LinTS).

. ¢ function approximation: neural network learned through SGD.

http://aistats.org/aistats2024/

Let B denote the class of all functions from X — R of the form:
(Mg o po M) (x)
T —
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where,

= M, and M> are matrices of size n x n and n? x n? respectively.

= ¢ [0,1]*("FU*2 5 Ris an S, o-invariant function where the invariance pertains to the initial

n’ rows out of a total of n(n + 1).

=p: X — |0, 1]”2><2 Is a matrix-valued function given as:

L1
= | T Ty

| tn L dijen)

Llet Z = {iq,40,...1;} C [n] (k > 1) and 7 be the permutation (cyclic shift). Then, the following
hold:

a) Any Sz-invariant function belongs to B. Moreover, the matrices M and My in its
decomposition have the forms:
1, ifue[k]andv =iy

My |u, v| = {O

1, ifu€lk?, wu=wvand

(po M) (z)|v] = (x;, z;)
forsomer e L

otherwise.

Ms|u, v| =

0, otherwise.

b) Any Zz-invariant function belongs to B. Moreover, M; is of the form as given above and
Mo is as follows:

1, ifuelk]and

(00 M) (@)[v] = (@i, 27(;,))
0, otherwise.

Ms|u,v] =

c) Any Dz-invariant function belongs to B. Moreover, M is of the form as given in part (a)
and (b) and M is as follows:

1, ifue|k]and

(po M) (z)[v] = (i, T73,))
else if u € [2k] \ [k] and

(0o M) (z)[v] = (27, ,)> Tiy_y)
0, otherwise.

)
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Theorem: Product Groups

Let the set of arms A C RY be finite. Suppose that the reward from playing an arm a € A at
any iteration, conditioned on the past, is sub-Gaussian with mean a ' u*. After T iterations, let
the guessed best arm A7 be drawn from the empirical distribution of all arms played in the T

rounds, i.e., P|[Ar = a| = %Z; 1{a®) = a} where alt) denotes the arm played in iteration ¢.
Then, PlAp # a*] < Cl%(T% where ¢ = ¢ (A, p*, v) is a quantity that depends on the problem

instance (A, ©*) and algorithm parameter (v).

Interpretability
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Figure 1. Visualization of reference (bandit) matrices M; (a) and M, (b), along with those obtained through training
our method entirely using SGD for polynomial regression of Zz-invariant functions. n = 10 and Z = {0, 2, 3,6, 7} (c,
d).

Results

Symmetric Polynomial Regression: \We evaluate the performance of our method on symmetric
polynomial regression tasks for subgroups Zz, D7, S7. We experiments with different values of
k = |Z| (k <n,n=10) and randomly sampled index sets Z. These accuracies indicate the suc-
cessful identification of the underlying subgroup within the top 3 bandit arms.

Table 2. Model Accuracy [%]

Table 3. MAE [x107?] Regression task

L
Let [n] = | Z; be a partition of [n], G; € {SIj,DIj,ZIj},Vj € |[L]and G =G1 x G x --- G,
j=1
such that no two groups Gy, G; are isomorphic and only one of the component groups is of
the type S7. Let ¥ be a G-invariant function, then there exists an S;-invariant function ¢ and a

specific matrix-valued function p, such that,

Y =¢op.
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Task G Accuracy G 7.7(5) | Z1(7) D7(5) | D£(7)
Polynomial Regression | Zz | 100 Lt 42 6.1 | 82 | 152
Polynomial Regression | D {100 Dt 47 | 7.9 | 6.3 | 101
Image-Digit Sum St 1100 St 11.7 185 21.3 | 34.3
Convex Area D7 100 M+ H-INV 123 | - | 232 -

ST (4) S 1100 SGD 144 1 17.7 265 | 344

Image-Digit Sum: This task aims to sum the digits of k£ images from a set of n input images.
The positions of the images are fixed but unknown to the model, as is the value of k. Thus, it
corresponds to learning an Sz-invariant function.

Limitations

Our framework is a proof of concept. Further extensive experiments are needed, and it's only
applicable for discrete groups. The complete collection of all possible permutation subgroups
discoverable through our method is unknown.
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