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Problem statement

We consider the problem of learning anH-invariant function f : X → R, whereX = [0, 1]n\E,
E =

{
[x1, x2 . . . , xn]T ∈ [0, 1]n : xi = xj for some i, j ∈ [n] with i 6= j

}
and H is the unknown

subgroup of Sn, i.e., H ∈
⋃

I⊆[n],|I|>1 {ZI , DI , SI}. In particular, we develop a unified frame-

work to automatically discover the data symmetry across a broad range of subgroups by lever-

aging the multi-armed bandits (MAB) and gradient descent method (SGD).

Theorem: Learning Zk-invariant function

Let ψ : [0, 1]k → R be Zk-invariant. There exists an Sk-invariant function φ : [0, 1]k×2 → R and

ρ : [0, 1]k → [0, 1]k×2, such that

ψ = φ ◦ ρ,

where ρ is defined as: [
x1 . . . xk

]
7→

[
(x1, x2), (x2, x3), . . . . . . , (xk, x1)

]
Regularity: φ is continuous

(
C0) or smooth (C∞) whenever ψ is C0 or C∞ respectively.

Note: Similar results hold for ψ as a D2k or Sk-invariant function, with modifications to the

definition of the function ρ as described in the table below.

Matrix-Valued Function

Sk Zk D2k

ρ(x)

[
...

xi xi
...

]
i∈[k]

[ ...

xi xτ (i)
...

]
i∈[k]


...

xi xτ (i)
xτ (i) xi

...


i∈[k]

Table 1. Subgroups of Sn and corresponding definitions of the matrix-valued function ρ, where τ is cyclic right shift
by 1 element.

Method

M1 ρ M2 ϕ

CONCAT I − M1

x ψ(x)

[x 0]

1. Our framework: G-invariant network with linear (M1,M2), matrix-valued ρ, and non-linear φ
functions.

2. Explicit characterization of (M1,M2) matrices for various subgroups.

3. Efficient training algorithm: MAB with SGD leveraging specific structures.

4. Optimal (M1,M2) search: linear parametric Thompson Sampling (LinTS).

5. φ function approximation: neural network learned through SGD.

Theorem: Unified Framework

Let B denote the class of all functions from X → R of the form:

x 7→ φ

([
(M2 ◦ ρ ◦M1) (x)
(I −M1) ([x 0])

])
where,

M1 andM2 are matrices of size n× n and n2 × n2 respectively.
φ : [0, 1]n(n+1)×2 → R is an Sn2-invariant function where the invariance pertains to the initial

n2 rows out of a total of n(n + 1).
ρ : X → [0, 1]n2×2 is a matrix-valued function given as:[

x1
...

xn

]
7→

[
...

xi xj
...

]
i,j∈[n]

Let I = {i1, i2, . . . ik} ⊆ [n] (k > 1) and τ be the permutation (cyclic shift). Then, the following

hold:

a) Any SI-invariant function belongs to B. Moreover, the matricesM1 andM2 in its

decomposition have the forms:

M1[u, v] =
{

1, if u ∈ [k] and v = iu

0, otherwise.

M2[u, v] =


1, if u ∈ [k2], u = v and

(ρ ◦M1) (x)[v] = (xi, xi)
for some i ∈ I

0, otherwise.

b) Any ZI-invariant function belongs to B. Moreover,M1 is of the form as given above and

M2 is as follows:

M2[u, v] =


1, if u ∈ [k] and

(ρ ◦M1) (x)[v] = (xiu, xτ (iu))
0, otherwise.

c) Any DI-invariant function belongs to B. Moreover,M1 is of the form as given in part (a)
and (b) andM2 is as follows:

M2[u, v] =


1, if u ∈ [k] and

(ρ ◦M1) (x)[v] = (xiu, xτ (iu))
1, else if u ∈ [2k] \ [k] and

(ρ ◦M1) (x)[v] = (xτ (iu−k), xiu−k)
0, otherwise.

Theorem: Product Groups

Let [n] =
L⋃
j=1

Ij be a partition of [n], Gi ∈ {SIj, DIj,ZIj},∀j ∈ [L] and G = G1 × G2 × · · ·GL

such that no two groups Gi, Gj are isomorphic and only one of the component groups is of

the type SI . Let ψ be a G-invariant function, then there exists an Sl-invariant function φ and a

specific matrix-valued function ρ, such that,

ψ = φ ◦ ρ.

Theorem: Error probability bound for LinTS

Let the set of arms A ⊂ Rd be finite. Suppose that the reward from playing an arm a ∈ A at

any iteration, conditioned on the past, is sub-Gaussian with mean a>µ?. After T iterations, let

the guessed best arm AT be drawn from the empirical distribution of all arms played in the T

rounds, i.e., P[AT = a] = 1
T

∑T
t=1 1{a(t) = a} where a(t) denotes the arm played in iteration t.

Then, P[AT 6= a?] ≤ c log(T )
T , where c ≡ c (A, µ?, ν) is a quantity that depends on the problem

instance (A, µ?) and algorithm parameter (ν).

Interpretability

Figure 1. Visualization of reference (bandit) matricesM1 (a) andM2 (b), along with those obtained through training

our method entirely using SGD for polynomial regression of ZI-invariant functions. n = 10 and I = {0, 2, 3, 6, 7} (c,

d).

Results

Symmetric Polynomial Regression: We evaluate the performance of our method on symmetric

polynomial regression tasks for subgroups ZI , DI , SI . We experiments with different values of

k = |I| (k < n, n = 10) and randomly sampled index sets I . These accuracies indicate the suc-

cessful identification of the underlying subgroup within the top 3 bandit arms.

Table 2. Model Accuracy [%]

Task G Accuracy

Polynomial Regression ZI 100
Polynomial Regression DI 100
Image-Digit Sum SI 100
Convex Area DI 100
SI (4) SI 100

Table 3. MAE [×10−2] Regression task

G ZI(5) ZI(7) DI(5) DI(7)
ZI 4.2 6.1 8.2 15.2

DI 4.7 7.9 6.3 10.1

SI 11.7 18.5 21.3 34.3

M +H-INV 12.3 - 23.2 -

SGD 14.4 17.7 26.5 34.4

Image-Digit Sum: This task aims to sum the digits of k images from a set of n input images.

The positions of the images are fixed but unknown to the model, as is the value of k. Thus, it
corresponds to learning an SI-invariant function.

Limitations

Our framework is a proof of concept. Further extensive experiments are needed, and it’s only

applicable for discrete groups. The complete collection of all possible permutation subgroups

discoverable through our method is unknown.
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