
Neural discovery of permutation subgroups

Anonymous Author
Anonymous Institution

Abstract

We consider the problem of discovering sub-
group H of permutation group Sn. Unlike the
traditional H-invariant networks wherein H is
assumed to be known, we present a method to
discover the underlying subgroup, given that it
satisfies certain conditions. Our results show that
one could discover any subgroup of type Sk(k ≤
n) by learning an Sn-invariant function and a
linear transformation. We also prove similar re-
sults for cyclic and dihedral subgroups. Finally,
we provide a general theorem that can be ex-
tended to discover other subgroups of Sn. We
also demonstrate the applicability of our results
through numerical experiments on image-digit
sum and symmetric polynomial regression tasks.

1 Introduction

1.1 Background

Deep Learning has proven to be a successful paradigm for
learning the underlying regularities of sensory data such as
images, text, and audio (Brown et al., 2020; He et al., 2016;
Ramesh et al., 2022). The data in the physical world pos-
sess a predefined structure with a low-dimensional mani-
fold approximation within a higher dimensional euclidean
space (Cayton, 2005; Schölkopf et al., 1998). However, the
task of supervised learning in such a high-dimensional data
space demands a large number of data points to counter
the curse of dimensionality. Thus, universal function ap-
proximations using neural networks in such a setting can
be prohibitively expensive to curate large datasets for di-
verse applications such as medical imaging. This calls for
the need for inductive bias to be incorporated into our net-
works such that they can utilize these priors for learning
valuable representations in the feature space.
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Convolutional Neural Networks proposed by (LeCun et al.,
1995) incorporate translation equivariance and thus pre-
serve translation symmetry. This is highly effective for per-
ception tasks since it enables the model with a notion of
locality and symmetry, i.e., the input and label are both in-
variant to shifts (preserves this property across layers), and
has likewise shown substantial gains in image recognition
tasks as demonstrated in (Szegedy et al., 2017; He et al.,
2016). However, from a group-theoretic perspective, CNN
happens to represent a particular case of invariance under
the action of a specific group. This leads to studying and
understanding its usability when extended to a more gen-
eral setting, i.e., equivariance or invariance to any generic
group action. Thus, learning such representations across
neural nets ensures preserving symmetry across the net-
work and efficiently discovering the underlying factors of
data variations by utilizing these priors.

1.2 Group Invariance and Equivariance

Learning symmetries from data has been studied exten-
sively in (Senior et al., 2020; Raviv et al., 2007; Monti
et al., 2017; Rossi et al., 2022). Invariant and equivariant
classes of functions impose a powerful inductive prior to
our models in a statistically efficient manner which aids
in learning useful representations on a wide range of data
(Bogatskiy et al., 2020; Esteves, 2020). Group equivariant
or invariant networks (Cohen et al., 2018; Esteves et al.,
2018) exploit the inherent symmetrical structure in the data,
i.e., equivariance or invariance to a certain set of group op-
erations (geometric priors) and can thus result in a signifi-
cant reduction in the sample complexity and lead to better
generalization. This has ubiquitous applications in various
tasks such as predicting protein interactions (Gainza et al.,
2020) and estimating population statistics (Zaheer et al.,
2017).

One of the important classes of group invariance networks
corresponds to the permutation group (Sn), i.e., the group
of all permutations of a set of cardinality n. Zaheer et al.
(2017) have focused extensively on the applicability of per-
mutation equivariance and invariance functions on arbitrary
objects such as sets. Whereas, (Kicki et al., 2020) proposes
a G-invariant network to approximate functions that are in-
variant under the action of any given permutation subgroup
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of Sn. Moreover, it is crucial to consider subgroups of Sn,
since any finite group is isomorphic to a subgroup of Sn

(Cayley’s theorem) for some n. For example, the Quarter-
nanian groupQ8 is isomorphic to a subgroup of S8. In addi-
tion, other interesting applications of functions correspond
to subgroups of Sn. For instance, the area of an n-polygon
is a Zn-invariant function of the polygon’s vertices (Kicki
et al., 2020).

1.3 Contributions

In most of the works mentioned earlier, the group (or sub-
group) is assumed to be known a priori. This restricted form
of modeling choice leads to reduced flexibility (also re-
strictions). It makes incorporating symmetries into our net-
works highly infeasible for real-world applications where
the underlying structure is unknown. Motivated by this, we
demonstrate a general framework, i.e.,G-invariant network
and a linear transformation for discovering the underlying
subgroup of Sn under certain conditions. Our main contri-
butions can be summarized as follows:

In this work, we propose a general framework to discover
the underlying subgroup of Sn under a broad set of condi-
tions.

• We prove that we could learn any conjugate group
(with respect to G) via a linear transformation and G-
invariant network.

• We extend this approach, i.e., a linear transformation
and G-invariant network to different classes of sub-
groups such as permutation group of k (out of n)
elements Sk, cyclic subgroups Zk and dihedral sub-
groups D2k. The G-invariant networks for the above
families are Sn,Zn and D2n respectively. In the latter
two cases, k should divide n.

• We prove a general theorem that can guide us to dis-
cover other classes of subgroups.

• We substantiate the above results through experiments
on image-digit sum and symmetric polynomial regres-
sion tasks.

2 Prior work

2.1 Group Invariant and Equivariant Networks

Significant progress has been made in incorporating in-
variances to deep neural nets in the last decade (Cohen
et al., 2019; Cohen and Welling, 2016b; Ravanbakhsh et al.,
2017; Ravanbakhsh, 2020; Wang et al., 2020). We observe
that most of the invariant neural networks proposed in the
literature assume the knowledge of the underlying symme-
try group. Various generalizations, i.e., group equivariant

or invariant neural networks, are presented in (Cohen et al.,
2019; Kondor et al., 2018).

Cohen and Welling (2016a) introduce Group Equivariant
Convolutional Neural Networks (G-CNNs) as a natural ex-
tension of the Convolutional Neural Network to construct
a representation with the structure of a linear G-space.
Further, Cohen et al. (2019) presents a general theory
for studying G-CNNs on homogeneous spaces and illus-
trates a one-to-one correspondence between linear equiv-
ariant maps of feature spaces and convolutions kernels. Co-
hen and Welling (2016b) provides a theoretical framework
to study steerable representations in convolutional neural
networks and establish mathematical connections between
representation learning and representation theory. Ravan-
bakhsh (2020) presents the universality of invariant and
equivariant MLPs with a single hidden layer. Additionally,
they show the unconditional universality result for Abelian
groups. Kondor and Trivedi (2018) utilize both representa-
tion theory and noncommutative harmonic analysis to es-
tablish the convolution formulae in a more general setting,
i.e., invariance under the action of any compact group.

2.2 Permutation Invariant and Equivariant Networks

Zaheer et al. (2017) demonstrates the applicability of
equivariant and invariant networks on various set-like ob-
jects. Further, they show that any permutation invari-
ant function can be expressed in a standard form, i.e.,
ρ (
∑

i ϕ (xi)), which corresponds to an elegant deep neu-
ral network architecture. Janossy pooling (Murphy et al.,
2018) extends the same to build permutation invariant func-
tions using a generic class of functions. The works, as men-
tioned earlier, focus mainly on the permutation group Sn.

Recent works by Kicki et al. (2020) and Maron et al. (2019)
provide a general architecture invariant to any given sub-
group of Sn. Kicki et al. (2020) design a G-invariant neu-
ral network for approximating functions (can specifically
approximate any G-invariant function) f : X → R us-
ing G-equivariant network and sum-product formulation,
whereX is a compact subset ofRn×m, for some n,m > 0)
for any given permutation subgroup G of Sn. They extend
this work to study the invariance properties of hierarchical
groups G < H ≤ Sn. However, in most cases, the under-
lying subgroup is generally unknown.

2.3 Automatic Symmetry Discovery

Dehmamy et al. (2021) introduces the Lie algebra convo-
lutional network (L-Conv), an infinitesimal version of G-
Conv, for automatic symmetric discovery. Their framework
for continuous symmetries relies on Lie algebras rather
than Lie groups and can thus encode an infinite group with-
out discretizing (Cohen and Welling, 2016a) or summing
over irreps. They show that the L-Conv network can serve
as a building block for constructing any group equivari-
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ant feedforward architecture. They also unveil interesting
connections between equivariant loss and Lagrangians in
field theory and robustness and Euler-Lagrange equations.
However, these apply only to Lie groups and are not spe-
cific to subgroups of the permutation groups. Anselmi et al.
(2019) proposes to learn symmetry-adapted representations
and also deduce a regularization scheme for learning these
representations without assuming the knowledge of the un-
derlying subgroup (of Sn). However, their proposed solu-
tion is implemented in an unsupervised way.

3 Preliminaries

This section gives a brief overview of various mathematical
concepts used in our work. Let G be a group.

1. Group action :- The action of G on a set X is de-
fined using the following map (written as g · x, ∀g ∈
G and x ∈ X) :

θ : G×X → X, (1)

satisfying the following properties :

• g1·(g2·x) = (g1g2)·x ∀g1, g2 ∈ G and x ∈ X ,
• 1 · x = x, ∀x ∈ X

where 1 is the identity element of G.

2. Group invariant function :- A function f : X → Y
is said to be group invariant with respect to G, if,

f(x) = f(g · x), ∀g ∈ G and x ∈ X (2)

We call f a G-invariant function.

3. Conjugate subgroups :- Two subgroups G1 and G2

of G are said to be conjugates, if ∃g ∈ G such that,

G2 = gG1g
−1 := {gkg−1 : k ∈ G1} (3)

4. Normal subgroup :- A subgroup N is said to be nor-
mal in G, if ∀g ∈ G

gNg−1 = N (4)

i.e., there are no subgroups that are conjugate to N .

We describe the notations used for various subgroups of
Sn in Table (1). Henceforth, unless explicitly mentioned,
we follow the notations mentioned in Table (1).

4 Proposed work

4.1 Problem statement

We consider the problem of learning an H-invariant func-
tion f : X → R, where X = [0, 1]n ⊂ Rn and H is

Table 1: Descriptions of notations
Symbol Description
Sn Permutation group of n elements
S
(0)
k Permutation subgroup of first k elements

(keeping the remaining n− k elements fixed)
Sk Permutation subgroup of random k elements
Zn Cyclic subgroup of n elements
Z(0)
k Cyclic subgroup of first k elements

Zk Cyclic subgroup of random k elements
D2n Dihedral subgroup of n elements
D

(0)
2k Dihedral subgroup of first k elements

Dk Dihedral subgroup of random k elements
An Alternating subgroup of n elements
Ak Alternating subgroup of random k elements

the unknown subgroup of Sn. In general, learning such a
function is intractable. However, we show that it is possible
to learn such a function, i.e., discover the underlying sub-
group H , where H belongs to a certain class of subgroups
(we explicitly state our conditions in Theorem 4.3, 4.4 and
4.5). The general consequence of our analysis is that learn-
ing a H-invariant function is thus equivalent to learning
a G-invariant function along with a linear transformation,
given that G and H satisfy certain conditions. Since any
given G can have several such subgroups, we propose to
learn the underlying subgroup H by exploiting the existing
structures using a family of G-invariant functions (such as
the one mentioned in Zaheer et al. (2017) for the permu-
tation group Sn) and a learnable linear transformation. We
formalize these ideas in the coming subsections.

To prove our results, we employ the following theorem re-
garding Sn-invariant functions (Zaheer et al., 2017), which
shows that any such function can be expressed in a canoni-
cal form.

Theorem 4.1 (Deep sets). f : X = [0, 1]n → R is a
permutation invariant (Sn-invariant) continuous function
iff if has the representation,

f(x) = ρ

(
n∑

i=1

γ(xi)

)
, x = [x1, x2, . . . xn]

T (5)

for some continuous outer and inner functions ρ : Rn+1 →
R, γ : [0, 1] → Rn+1.

We get the following result if we consider the permutations
of the first k elements.

Corollary 4.1.1. f : [0, 1]n → R be an S0
k-invariant con-

tinuous function iff it has the representation,

f(x) = ρ

(
k∑

i=1

γ(xi), xk+1, . . . , xn

)
(6)
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Proof. To prove Theorem 4.1, it has been shown that (Za-
heer et al., 2017), X (n) = {x1, x2, . . . , xn ⊂ [0, 1]n : x1 ≤
x2 ≤ x3 · · · ≤ xn} is homeomorphic to

∑n
i=1 γ(Xi),

where
γ(t) =

[
1, t, t2, . . . tn

]T
(7)

Hence, X (n:k) = {x1, x2, . . . , xn ⊂ [0, 1]n : x1 ≤ x2 ≤
x3 · · · ≤ xk} is homeomorphic to

∑k
i=1 γ(Xi)× [0, 1]n−k.

Let, E(x) =
[∑k

i=1 γ(xi), xk+1, . . . , xn

]T
. Then, it is

an homeomorphism from X (n:k) to Im(E) (Image of E).
If we set ρ = fE−1, we get ρ (E(x)) = f(x).

We use the same definition of γ provided in the eq. (7) in
the subsequent results as well. Now, we state our first result
using the conjugacy relation between subgroups.
Lemma 4.2. Any Sk-invariant function ψ, can be realized
through composition of an S(0)

k -invariant function ϕ and a
linear transformation M , i.e., ψ = ϕ ·M . In addition, ψ
can be realised through the following form,

ψ(x) = ρ

(
k∑

i=1

γ
(
mT

i x
)
, mT

k+1x, . . . ,m
T
nx

)
, (8)

where mi is the ith row of M .

Proof. Note that any Sk is conjugate to S(0)
k . Thus, ∃ g ∈

Sn such that
S
(0)
k = gSkg

−1 (9)

Let ψ : X → R be an Sk-invariant function, i.e.,

ψ(x) = ψ(h · x), ∀h ∈ Sk, x ∈ X

ψ(
(
g−1g

)
· x) = ψ(

(
g−1ug

)
· x), ∀u ∈ S

(0)
k

(ψg−1)(g · x) = (ψg−1)(u · (g · x))
(ψg−1) (Mx) = (ψg−1)(u · (Mx)) (10)

From eq. (10), we see that ϕ = ψ · g−1 and M = g are the
desired S(0)

k - invariant function and the linear transforma-
tion respectively and ϕ = ψ ·M . We get the second part of
the result by applying Corollary 4.1.1 to ϕ.

We could also relax the conjugacy condition, i.e., discover
subgroups of type Sk when k itself is unknown. This is
formalized in the following result.
Theorem 4.3 (Subgroups of type Sk). Any Sk-invariant
function (k ≤ n) ψ, can be realised using an Sn-invariant
function and a linear transformation, in specific, it can be
realised through the following form,

ψ(x) =
(
ϕ · M̂

)
(x) = ρ

([
(I −M)x∑n
i=1 γ

(
mT

i x
)]) (11)

where M̂ =

[
I −M
M

]
and

ϕ(y) =
[
y1, . . . , yn,

∑n
i=1 γ(yn+i)

]T

Proof. Since Sk is conjugate to S0
k , it is enough to prove

the result for S0
k-invariant function. Hence, the goal is to

show that (I −M)X ×
∑n

i=1 γ
(
mT

i X
)
is homeomorphic

to
∑k

m=1 γ(Xm) × [0, 1]n−k (from Corollary 4.1.1 and
Lemma 4.2) for some linear transformation M . Suppose,

M =

[
Ik×k 0
0 0

]
, (12)

then,

[
(I −M)x∑n
i=1 γ

(
mT

i x
)] =


0(k)

xk+1

.

.
xn

B +
∑k

i=1 γ (xi)

 , (13)

where B = (n − k)γ(0) and 0(k) is k-dimensional zero
vector. Thus, from RHS of the eq. (13), the above claim
follows. (Note that, the function Mx 7→

∑n
i=1 γ

(
mT

i x
)

is
Sn-invariant and ϕ is Sn

2n-invariant function).

We now extend our method to cyclic and dihedral sub-
groups of Sn and state the following result.
Theorem 4.4 (Cyclic and Dihedral subgroups). If k|n, any
Zk-invariant (orD2k-invariant) functionψ, can be realised
using a Zn-invariant (or D2n-invariant) function ϕ and
a linear transformation M , in specific, it can be realised
through the following form,

ψ(x) = ρ

([
(I −M)x
ϕ (Mx)

])
(14)

Proof. In this proof, without loss of generality, we prove
the result for Z(0)

k -invariant function. Suppose,

M =


Ik×k 0
Ik×k 0

...
...

Ik×k 0

 , (15)

Since k|n, we can stack the Ik×k matrices as shown in eq.
(15). Then, M : X → X is defined as,

x = [x1, x2 . . . xn]
T 7−→Mx =[x1, x2, . . . xk,

x1, x2, . . . , xk,

...

x1, x2, . . . , xk]
T (16)

Under the action of Zk (h · x, for some h ∈ Zk), we get
that,

x
h7−→ x′ = [xu, xu+1, . . . , xk, x1, . . . , xu−1]

T (17)
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which corresponds to (g · (Mx), for some g ∈ Zn),

Mx
g7−→Mx′ = [xu, xu+1, . . . , xk, x1, . . . , xu−1

xu, xu+1, . . . , xk, x1, . . . , xu−1

...

xu, xu+1, . . . , xk, x1, . . . , xu−1]
T (18)

Similarly, the converse is also true, i.e., Zn-action on Mx
corresponds to Zk-action on x. Hence, the Zk-invariant
function of x corresponds to Zn-invariance of Mx. Sim-
ilar proof holds for dihedral groups (D2k and D2n).

The above set of techniques can also be extended to other
classes of subgroups. In this regard, we state the following
general result.

Theorem 4.5. Any H-invariant function ψ can be learnt
through composing a G-invariant function ϕ with a linear
transformation M , i.e., ψ = ϕ ·M if and only if the follow-
ing conditions hold,

1. For any h ∈ H, ∃g ∈ G such that M(h · x) = g ·
(Mx) , ∀x ∈ X

2. For any g ∈ G such that g · (Mx) ∈ R(M), ∃h ∈ H
such thatM(h·x) = g ·(Mx) , ∀x ∈ X , whereR(M)
is the range of M .

Proof. The claim directly follows from the following ob-
servations.

Condition (1) states that, any action h·x (action ofH onX)
corresponds to an action g · (Mx) (action of G on R(M)).

Similarly, condition (2) states that, any action g ·(Mx) cor-
responds to an action h · x.

5 Discussion

The underlying theme from the results stated in the pre-
vious section is that we could discover any subgroup be-
longing to a particular class of subgroups by learning a G-
invariant function and a linear transformation. Depending
on the class, the chosen G varies. We further elaborate on
these observations in the following subsections.

5.1 Conjugate Groups

In Lemma 4.2, the class of subgroups corresponds to those
of type Sk (fixed k) and the correspondingG can be S0

k . We
observe that, for a fixed k, even if we don’t know the ex-
act underlying subgroup Sk(a total of

(
n
k

)
possibilities), we

could learn this unknown subgroup. In addition, we also in-
corporate the canonical form of permutation invariant func-
tions in the resulting architecture. Moreover, this result can

Figure 1: Generic framework for learning H-invariant
function. The dotted arrows point towards specific exam-
ples of linear andG-invariant functions. The corresponding
H-invariant functions are Sk-invariant and Zk-invariant.

be generalized to any class of conjugate subgroups, and the
corresponding G is one of these conjugate groups. The sig-
nificance of this result lies in the fact that a variety of sub-
groups are related through conjugation. For instance, all Zk

form one conjugacy class for a given k, and so does Ak’s.

This result is not entirely helpful if the underlying subgroup
is normal since it is not conjugate to any other subgroup.
However, this is not much of a hindrance since the only
non-trivial proper normal subgroup of Sn is An, ∀n ≥ 5.

5.2 Sk, Zk and D2k Subgroups

Theorem 4.3 focuses on subgroups of type Sk (varying k
and k ∈ {1, 2, . . . , n}), and the corresponding G is Sn

itself. We incorporate the canonical form of permutation
invariant functions here as well. We observe that the num-
ber of such subgroups is 2n − 1 for a given n. Hence, we
could learn any of these subgroups with the standard ar-
chitecture of an Sn-invariant function and a linear transfor-
mation. Note that if k is fixed, either of the architectural
forms given by Lemma 4.2 and Theorem 4.3 is applicable.
We will discuss the corresponding empirical results in the
coming sections. Theorem 4.4 considers subgroups of the
cyclic Zk and dihedral group D2k. The corresponding G-
invariant functions are of Zn and D2n, respectively.

5.3 Generalization

Theorem 4.5 presents a general set of conditions to be sat-
isfied to learn any H-invariant function using a G invariant
function and a linear transformation. As such, the previous
results are specific cases of this Theorem. However, they
provide explicit structures of the linear transformation M .
These can help design appropriate training techniques to
learn the optimum M , while the general result of Theorem
4.5 can guide us towards discovering results for new classes
of subgroups.
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5.4 Limitations

The proposed framework presumes the knowledge of the
underlying class of subgroups apriori (but not the exact
subgroup) and an appropriate value of n for Sn, Zn or D2n

invariant functions. The drawbacks mentioned here are in-
teresting research directions to pursue in the future.

6 Experiments

We evaluate the accuracy of our proposed method on
image-digit sum and symmetric polynomial regression
tasks. The problem of image-digit sum can be modified and
cast as learning an Sk-invariant function, while the polyno-
mial regression task intrinsically corresponds to learning a
G-invariant function. These are summarized in the follow-
ing subsections.

6.1 Image-Digit Sum

This task aims to find the sum of k digits using the
MNISTm (Loosli et al. (2007)) handwritten digits dataset.
It consists of 8 million gray scale 28 × 28 images of dig-
its {0, 1, ..., 9}. We employ a training set of 150k samples
and a test set of 30k samples. We consider the following
approaches for evaluation.

1. Ground truth:- Sk-invariant neural network pro-
posed by Zaheer et al. (2017).

2. LSTM:- LSTM network (Zaheer et al., 2017).

3. Proposed method:- A linear layer followed by an Sn-
invariant network.

For the LSTM network and the proposed method, the input
is a random sample of n (n = 10) images, and the target is
the sum of k (k less than n) digit labels. We run separate
experiments for each of k ∈ {1, 3, 5, 7, 9}. Since all n im-
ages are given as input, the two approaches are agnostic of
the underlying subgroup. However, we feed only these k of
these images as input for the first approach, while the target
output remains the same. As such, this task is equivalent to
learning an Sk-invariant function.

6.2 Symmetric Polynomial Regression

We evaluate the performance of our method on symmet-
ric polynomial regression tasks as discussed in Kicki et al.
(2020), primarily for subgroups of Z10 and Z16. For all our
experiments, we utilize a Zn-invariant neural network with
a Sum-Product layer as discussed in Kicki et al. (2020) and
a linear layer. First, we run our experiments for subgroups
of Z10, i.e., Z5 and the group itself (trivial subgroup). We
then access the performance for subgroups of Z16, namely
Z2, Z4, Z8, Z16 using a similar architectural design. We
consider the following approaches for evaluation.

1. Ground truth:- Zk-invariant neural network pro-
posed by Kicki et al. (2020).

2. Simple-FC:- A stack of fully-connected feedforward
layers.

3. Conv-1D:- A simple convolutional neural network
and feedforward layers.

4. Proposed method:- A linear layer followed by a Zn-
invariant network.

The architectural details of the models considered in our
experiments are discussed in the appendix section.

7 Results

7.1 Image-Digit Sum

The mean absolute errors (MAEs) for the image-digit sum
task are shown in Figure 2. We observe that the proposed
method outperforms the LSTM baseline and is competitive
with respect to the ground truth method (in this case, Deep
sets with k input images) when the underlying subgroup Sk

is known. In addition, our method converges faster when
compared to the LSTM network, which is apparent from
the plots for the training and validation errors in Figure 3.

Figure 2: Mean absolute errors (MAEs) for Image-Digit
Sum task.

Figure 3: Training and Validation loss (MAE) for Image-
Digit Sum using MNIST dataset.
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7.2 Symmetric Polynomial Regression

In the Zk-invariant polynomial regression task, we train our
models for 2500 epochs for each of the subgroups of Z5 and
Z10.

In Table 2, 3, 4 we compare the given baselines with our
proposed method for the task of discovering unknown sub-
groups. Our method outperforms the Simple-FC and Conv-
1D baseline networks for each of the given subgroups. As
expected, it does not match the baseline architecture-the
G-invariant network, i.e. when the underlying network is
invariant under the action of the given subgroup (the sub-
group is hence known apriori) by a significant margin for
each of the diverse set of subgroups we have considered in
this task. However, in a few cases, we observe large stan-
dard deviations and attribute such values to random initial-
izations of our experiments (weight initializations). A de-
tailed version of our results and the mathematical definition
of the polynomials is presented in the appendix section.

From Figure 4, it is evident that the G-invariant function
outperforms both our method and the baselines by a sig-
nificant gap. The Simple FC and Conv-1D networks have
very similar performances and show no prominent effect,
even with an increase in data size.

Table 2: Mean absolute errors (MAEs) [10−2] for Z5 : Z10

Method Train Validation Test
Ground truth 2.646± 0.912 7.324± 0.555 7.530± 0.576

Proposed 4.472± 1.255 24.594± 6.929 24.774± 6.45
Conv-1D 20.90± 4.908 32.96± 1.308 32.33± 1.176

Simple FC 23.859± 3.867 33.57± 2.071 33.14± 2.114

Table 3: MAEs [10−2] for Z10 : Z10

Method Train Validation Test
Ground truth 6.887± 1.314 16.678± 0.555 17.158± 0.595

Proposed 14.527± 1.718 39.694± 4.133 40.109± 4.166
Conv-1D 35.712± 2.71 52.956± 0.702 50.628± 1.327

Simple FC 46.131± 2.27 54.618± 1.338 51.642± 0.896

Table 4: MAEs [10−2] for Z4 : Z16

Method Train Validation Test
Ground truth 1.207± 0.255 3.412± 0.4 3.539± 0.391

Proposed 3.315± 1.654 23.703± 4.868 24.694± 5.253
Conv-1D 8.396± 3.022 31.335± 0.772 31.103± 0.867

Simple FC 7.27± 5.03 30.823± 1.74 30.826± 1.614

7.3 Effect of the data size on the performance

This section aims to assess the effect of the dataset size in
learning Zk-invariant functions using our proposed method
and hope to gain a better understanding in such a setting. To
analyze our model performance with respect to data size,
we use 16, 32, and 64 data points for training (as mentioned
in Kicki et al. (2020), we randomly sample these values
from [0,1]) and use 480 and 4800 as validation and test sets
respectively to assess the generalization ability for each of
these methods as mentioned above. We report the mean and
standard deviation values across 10 randomly initialized it-
erations.

Figure 4: The MAE value comparisons using the test
dataset for all the models we have considered in this task
for learning Z5 invariant network. The x-axis represents the
size of the training set (16, 32, 64).

We also examine the Simple-FC and Conv-1D network by
increasing its parameter count, i.e., varying the number of
neurons in each layer. However, we observe no significant
gains in doing so, as mentioned in the appendix section for
at least a few subgroups.

8 Conclusion

In this work, we studied the problem of discovering the un-
derlying subgroup of Sn, i.e., learning a H-invariant func-
tion where H is an unknown subgroup of Sn. We proved
that we could learn any H-invariant function using a G-
invariant function and a linear transformation provided H
belongs to a specific class of subgroups. We considered
various subgroups, such as conjugate subgroups, permuta-
tion subgroups of k elements, and cyclic and dihedral sub-
groups, and illustrated unique structures of the correspond-
ing linear transformations. We demonstrated the validity of
our theoretical analysis through empirical results. We also
discussed the limitations of our method, which may lead to
exciting research directions in the future.
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