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Abstract

We consider the problem of learning a function respecting a symmetry from among1

a class of symmetries. We develop a unified framework that enables symmetry2

discovery across a broad range of subgroups including locally symmetric, dihedral3

and cyclic subgroups. At the core of the framework is a novel architecture com-4

posed of linear and tensor-valued functions that expresses functions invariant to5

these subgroups in a principled manner. The structure of the architecture enables6

us to leverage multi-armed bandit algorithms and gradient descent to efficiently7

optimize over the linear and the tensor-valued functions, respectively, and to in-8

fer the symmetry that is ultimately learnt. We also discuss the necessity of the9

tensor-valued functions in the architecture. Experiments on image-digit sum and10

polynomial regression tasks demonstrate the effectiveness of our approach.11

1 Introduction12

It is well known that machine learning tasks often exhibit natural symmetries. As a result, the function13

to be learnt, say in a classification or regression setting, possesses additional structure in terms being14

invariant or equivariant to the underlying symmetry. Being able to exploit symmetry structure in the15

training pipeline confers benefits such as improved sample complexity, added explainability, fewer16

model parameters and improved generalizability. A classic case in which symmetry is leveraged is17

the convolutional neural network (CNN) architecture [1] that intrinsically expresses equivariance to18

translations of input images in classification tasks.19

A growing body of work has addressed the problem of incorporating known symmetries into the20

learning pipeline, either via augmenting data using the symmetry structure [2] or designing neural21

nets that inherently express functions with known symmetries [3, 4]. Consequently, it is known22

how to design architectures with n inputs that are, say, invariant to arbitrary permutations of the23

input variables, or equivalently, neural functions that are Sn-invariant where Sn is the group of24

permutations on n elements [5].25

However, there are often settings in which the target function possesses a symmetry which is a priori26

unknown, but known to belong to a class of possible symmetries (subgroups of Sn). We are interested27

in the problem of discovering such an unknown symmetry automatically from data. Consider, for28

instance, data representing measured states of a system of multiple particles (e.g., positions, velocities,29

etc.), with the target function representing a physical quantity of interest depending on the state,30

such as potential energy. If only k of the n particles (whose identities are unknown) actually interact31

with each other (maybe because they are the only charged particles), then the net energy is invariant32

to permutations of the positions of this subset of particles alone. Here, the target function exhibits33

invariance with respect to the subgroup of permutations Sk associated to the position indices of these34
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k particles, which are not known upfront. On the other hand, the system’s kinetic energy is unchanged35

under permutations of the subset of velocity parameters of the system state. In general, when the36

semantics of the target function and/or the input variables are unknown, then so is the underlying37

symmetry. A similar problem arises in computer vision as that of learning a classifier that can detect38

patterns or objects in an image while being invariant to local transformations or symmetries applied39

to specific regions or parts of the image [6, 7].40

We consider the problem of learning a function f : X → Y given data
{ (
x(u), y(u)

) }m
u=1

, and41

given a collection of subgroups {G1, G2, . . .} of Sn
1, one of which f is invariant with respect to42

(i.e., f ◦ g ≡ f for every transformation g in some subgroup Gj). For a sufficiently rich collection43

of possible symmetry subgroups2, we provide a unified and easy-to-use framework comprising of44

a parametric architecture together with algorithms to tune it and learn the underlying symmetry45

(subgroup). Our specific contributions are presented in the following subsection.46

1.1 Contributions47

• We introduce a general framework for discovering a variety of discrete symmetries. Our48

framework allows for efficiently learning functions that can be invariant to any locally49

symmetric, dihedral or cyclic subgroup using the same architecture.50

• The unified architecture that forms the backbone of our framework is comprised of a novel51

combination of (learnable) linear and tensor-valued functions. We explicitly characterize52

the structure of both these transformations, in particular showing how they correspond to a53

variety of subgroups.54

To the best of our knowledge, this is the first unified framework to discover a wide range of55

discrete symmetries.56

• Leveraging the specific structure of the linear transformations in our unified architecture, we57

devise an efficient training algorithm based on multi-armed bandits (for discrete optimization58

over matrices representing the learnable linear part) along with stochastic gradient descent59

(for continuous optimization over the nonlinear part). The bandit sampling allows for60

efficient search across the entire family of matrices associated to various symmetries, and,61

with our structural characterization, allows for interpretable results.62

1.2 Related Work63

1.2.1 Group Invariance64

The utilization of symmetries in deep learning has garnered significant research interest in recent65

years [9, 10]. Within this context, [11] introduced G-equivariant neural networks as an extension66

of Convolutional Neural Networks (CNNs) to encompass a broader range of symmetries. In G-67

equivariant neural networks, the network layers demonstrate equivariance under the action of the68

group G, owing to the linear G-space structure of the representations. Furthermore, [12] establish69

convolution formulae in a more general setting, i.e., invariance under the action of any compact group70

and [13] delve into the application of G-CNNs on homogeneous spaces using equivariant linear maps.71

1.2.2 Discrete Groups72

The study of invariance to finite groups has received considerable attention in the existing literature.73

[4] proposed an approach that utilizes invariant polynomials to design G-invariant neural networks74

f : X → R, where X is a compact subset of Rn, achieved through a combination of a G-equivariant75

transformation block and the sum-product layer. They demonstrate the universality of their approach76

for larger and hierarchical subgroups of Sn. In a different approach, [3] introduced permutation-77

equivariant functions defined on sets using a decomposable representation expressed as ρ (
∑

i ϕ (xi)).78

Motivated by these, we consider invariance under the action of subgroups of G ≤ Sn, when the79

underlying subgroup is unknown.80

1Restricting to subgroups of Sn is justified by the fact that any finite group is isomorphic to a subgroup of
Sn for some n by Cayley’s theorem [5].

2In general, if we consider all possible subgroups of Sn, then the problem of learning a specific symmetry is
computationally intractable [8]
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1.2.3 Automatic Symmetry Discovery81

[10] presents a Lie algebra convolution network (L-conv) for constructing feedforward architectures82

that exhibit equivariance to arbitrary continuous groups. In a similar vein, [2] propose a different83

approach by parameterizing a distribution over training data augmentations, while [14] introduce84

a meta-learning framework that addresses symmetries through the reparameterization of network85

layers. Building upon the idea of establishing invariant symmetry-adapted data representations, [15]86

investigates the use of regularization on the representation matrix for unsupervised orbit learning.87

2 Problem Setup and Proposed Solution88

2.1 Mathematical Preliminaries89

The group Sn is the set of all permutations on n elements along with the natural group multiplication90

(composition) and inverse operations. By a symmetry we mean a subgroup G ≤ Sn; all groups91

used henceforth are assumed to be of this form. The group generated by an element g is ⟨g⟩ =92

{g, g2, g3, . . .}. We use f ◦ g to denote function composition: (f ◦ g)(x) = f(g(x)).93

Definition 2.1. Let I = {i1, . . . , ik} ⊂ [n] be an index set with i1 < · · · < ik.94

• ZI is the locally cyclic group corresponding to I, generated by the permutation π ∈ Sn95

such that π(i) = iτ(j) if i = ij and π(i) = i otherwise. Here, τ(j) = (j mod n) + 196

denotes the cyclic shift operator.97

• DI is the locally dihedral group corresponding to I, defined as {π, π2, . . . , σπ, σπ2, . . . },98

where π ∈ Sn is as defined above and σ ∈ Sn is defined by σ (il) = σ (ik−l+1) ∀l ∈ [k]99

(reflection about the center of I).100

• SI is the locally symmetric group corresponding to I, consisting of all permutations that101

move elements only within I, i.e., SI = {π ∈ Sn : π(j) = j ∀j /∈ I}.102

• Zk = ZI ; D2k = DI ; Sk = SI with I = [k] (the first k elements of [n]).103

Definition 2.2. Let g ∈ Sn. The action of g on Rn is the map x 7→ g · x given by (g · x)i = xg(i)104

∀i ∈ [n].105

Definition 2.3. The orbit of x ∈ X under the action of groupG is defined asOG(x) = {g ·x|g ∈ G}.106

Definition 2.4. A function f : X → R is said to be G-invariant, if f(x) = f(g · x),∀g ∈ G, x ∈ X .107

Definition 2.5. Let X,Y ⊆ Rn. A function f : X → Y is said to be G-equivariant, if for any g ∈ G,108

∃ g̃ ∈ G, f(g · x) = g̃ · f(x),∀x ∈ X .109

Figure 1: Proposed unified architecture for discovering symmetries, composed of linear transforma-
tions (M1, M2) and nonlinear functions (ρ, ϕ). ρ is explicitly fixed whereas M1,M2, ϕ are trainable.
Theorem 4 guarantees that the architecture can express functions invariant to any locally symmetric,
dihedral and cyclic. Here, ϕ is represented by a neural network and trained using gradient descent
while M1,M2 are optimized using bandit sampling over a discrete space of matrices.

2.2 Problem statement110

Let X = [0, 1]n ⊂ Rn denote the input (instance) domain. We frame the problem of symmetry111

discovery as follows: Given data
{ (
x(u), y(u)

) }m
u=1

with x(u) ∈ X, y(u) ∈ R, and a collection of112

subgroups G = {G1, G2, . . .} of Sn, learn a function f : X → R such that f is G-invariant for some113

G ∈ G with respect to the data.114
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2.3 Symmetry discovery framework115

We aim to develop a framework for solving the symmetry discovery problem defined above in the116

problem statement, when the possible set of symmetries G can be any group of the form ZI , DI and117

SI , i.e., G = ∪I⊆[n]{ZI , DI , SI}. It is not a priori clear how to efficiently search over the function118

class F(G) – observe that G is an exponentially large (in n) set of subgroups.119

Our solution strategy is based on finding a standard decomposition for any function ψ in the function120

class F(G). To this end, we first consider each type of subgroup individually and prove a structural121

decomposition of the form ψ = ϕ ◦ ρ for any ψ which is invariant to that group. We then design122

a single decomposition of the form ϕ ◦M2 ◦ ρ ◦M1 that effectively integrates all the individual123

decompositions.124

Our first result shows that any Zk-invariant function can be expressed as a composition of an125

Sk-invariant function and a specific tensor-valued function.126

Theorem 1. Let ψ : [0, 1]k → R be Zk-invariant. There exists an Sk-invariant function ϕ : Rk → R127

such that128

ψ = ϕ ◦ ρ, (1)

where129

ρ : [x1, x2, . . . xk]
T 7→ [(x1, x2), (x2, x3), . . . , (xk−1, xk), (xk, x1)]

T . (2)

Proof. (Sketch) The Zk-invariant function ψ must assign the same value to every element of any130

Zk-orbit. We show that any such orbit OZk
(x) can be uniquely associated with the corresponding131

Sk-orbit OSk
(ρ(x)). From this, it follows that by defining the Sk-invariant function ϕ to take the132

same value across any orbit of the form OSk
(ρ(x)) as ψ does across the orbit OZk

(x) (and an133

arbitrary value across orbits not of the form OSk
(ρ(x))), we obtain the result.134

We also assess the regularity conditions such as smoothness (C∞) and continuity (C0) of the ψ and135

ϕ function, and in this regard we state the following theorem.136

Theorem 2. The ϕ function is smooth (C∞) whenever ψ function is C∞. Similarly, the ϕ function is137

continuous (C0) whenever ψ function is C0.138

We now state the following lemma, to prove Theorem 2.139

Lemma 3. The tensor-valued function ρ is a diffeomorphism between X and its image ρ(X), where140

X = [0, 1]k.141

Proof. To prove the claim, we need to endow Y = ρ(X) with a topology. First, we observe142

that, for any y = [(y1, y2) , (y2, y3) . . . , (yk, y1)]
T it can be written as a vector of the form143

[y1, y2, y2, y3, y3, . . . yk, yk, y1]
T ∈ R2k. Thus we can employ subspace topology of the standard144

topology of R2k. It is obvious to see that ρ is bijective with ρ−1 defined as:145

[(y1, y2) , (y2, y3) , . . . , (yk, y1)]
T 7→ [y1, y2, . . . yk]

T

Thus, since ρ and ρ−1 are smooth with respect to the subspace topology, ρ is a diffeomorphism.146

Proof. From 1, we have ψ = ϕ ◦ ρ and thus, ψ ◦ ρ−1 = ϕ.147

From Lemma 3, ρ−1 is smooth (C∞) since ρ is a diffeomorphism. Thus, if ψ is a continuous function148

(C0), then ϕ is composition of smooth function with a C0 function which in turn implies composition149

of two C0 functions. Thus ϕ is C0. Similarly, if ψ is C∞, then ϕ is a composition of C∞ functions.150

Thus ϕ is C∞.151

Results of the same form as Theorem 1 hold for ψ being a D2k- or Sk-invariant function by replacing152

the definition of the function ρ with the appropriate definition in Table 1.153

We now state our main result, which is a single canonical functional decomposition that includes154

functions invariant to all the subgroups of type ZI , SI and DI , in Theorem 4. The key idea is to155

introduce ‘selection’ matrices that appropriately reduce a general function to the specific type of156

subgroup as in Theorem 1 (Zk, D2k or Sk).157
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Subgroup Sk Zk D2k

ρ(x)


...

(xi, xj)
...


i,j∈[k],i̸=j


...

(xi, xτ(i))
...


i∈[k]


...

(xi, xτ(i))
(xτ(i), xi)

...


i∈[k]

Table 1: Subgroups of Sn and corresponding definitions of the tensor-valued function ρ, where τ is
cyclic right shift by 1 element.

Theorem 4 (Unified symmetry discovery framework). Let B denote the class of all functions from
[0, 1]n → R of the form:

x 7→ ϕ

([
(M2 ◦ ρ ◦M1) (x)
(I −M1) (x)

])
where,158

• M1 : Rn → Rn and M2 : Rn(n−1) → Rn(n−1) are linear transformations (i.e., matrices),159

• ϕ is an Sn(n−1)-invariant function, and160

• ρ : Rn → Rn(n−1) is a tensor-valued function ρ : [x1, . . . , xn]
T 7→

[
(xi, xj)i,j∈[n],i̸=j

]T
.161

Let I = {i1, i2, . . . ik} ⊆ [n]. Then, the following hold:162

a) Any SI-invariant function belongs to B. Moreover, the matrices M1 and M2 in its decompo-163

sition have the forms:164

M1[u, v] =

{
1, if u ∈ [k] and v = iu
0, otherwise,

(3)

M2 = In(n−1)×n(n−1). (4)

b) Any ZI-invariant function belongs to B. Moreover, M1 is of the form as given in (3) and165

M2 is as follows:166

M2[i, j] =

{
1, if i ∈ [k] and (ρ ◦M1) (x)[j] = (xi, xτ(i))

0, otherwise.
(5)

c) Any DI-invariant function belongs to B. Moreover, M1 is of the form as given in (3) and167

M2 is as follows:168

M2[i, j] =


1, if i ∈ [2k] and (ρ ◦M1) (x)[j] = (xi, xτ(i))

1, else if i ∈ [2k] and (ρ ◦M1) (x)[j] = (xi, xτ(i))

0, otherwise.
(6)

Note that the function ρ above is the same as the one for Sk in Table 1 but with k = n.169

Proof. (Sketch) We prove the result for I = [k], since for any other I (i.e., k indices), a simple170

modification for M1 (composition with a suitable permutation matrix) works. From Theorem 1, we171

see that, the goal is to show that ϕ◦M2 ◦ρ◦M1 (with ϕ being Sn(n−1)-invariant and ρ corresponding172

to Sn) is equivalent to ϕ ◦ρ (with ϕ being Sk-invariant (similarly for Zk or D2k) and ρ corresponding173

to Sk (similarly for Zk or D2k)). This is achieved via appropriately choosing M1 and M2. The M1174

helps in selecting appropriate indices over which the subgroup acts and M2 helps in identifying the175

broader category (symmetric, cyclic or dihedral) of the subgroup.176

Figure 1 depicts the unified architecture stated in Theorem 4, along with the method to train it177

(described in Section 2.4).178

We remark that Theorem 4 can be extended to express functions invariant to wider classes of179

subgroups. The following results offer a glimpse of how this can be achieved, for instance, for180

product groups.181
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Theorem 5 (Invariance to product groups). Let [n] =
L⋃

j=1

Ij be a partition of [n], Gi ∈182

{SIj , DIj ,ZIj},∀j ∈ [L] and G = G1 × G2 × · · ·GL such that no two groups Gi, Gj are183

isomorphic. Let ψ be a G-invariant function, then there exists an Sl-invariant function ϕ and a184

specific tensor-valued function ρ, such that,185

ψ = ϕ ◦ ρ. (7)

186

Proof. (Sketch) Let the ρ function be defined as the one outputting all the appropriate monomials of187

the form xix
2
j corresponding to individual components of the product group G. Then ρ is injective188

and G-equivariant. Note that, here l equals to the total number of all the appropriate monomials. The189

remaining steps are similar to the ones of Theorem 1.190

Corollary 5.1. Let σ ∈ Sn and G =
〈
σ
〉

such that whose disjoint cycles have unique lengths. Let ψ191

be a G-invariant function, then there exists an Sl-invariant function ϕ and a specific tensor-valued192

function ρ, such that, ψ = ϕ ◦ ρ.193

Proof. We use the fact that any permutation σ can be decomposed into disjoint cycles. Hence194

G = ZI1 × ZI2 · · · × ZIL
with no two ZIk

,ZIl
are isomorphic (because the lengths are different).195

Applying Theorem 5, we prove the claim.196

2.4 Optimization for discovering symmetries197

Having proposed, via Theorem 4, a common functional form (ϕ ◦M2 ◦ ρ ◦M1) for any function198

invariant to symmetries of type ZI , DI or SI , we turn to methods to fit the functional form to data199

(??) and discover the underlying symmetry.200

A straightforward approach is to employ standard stochastic gradient descent (SGD)-type optimization201

jointly over ϕ, parameterized as a neural network, and M1,M2, parameterized as matrices in Rn×n202

and Rn(n−1)×n(n−1), respectively. However, in view of the discrete structure of M1,M2 prescribed203

explicitly by Theorem 4 (equations (3)-(6)), we resort to multi-armed bandit sampling to learn the204

best (M1,M2) pair in an ‘outer loop’, with SGD over ϕ running in the ‘inner loop’. Specifically,205

each arm of the bandit corresponds to a (M1,M2) pair, and the reward for it is the negative of the loss206

that SGD over ϕ obtains for that pair. This approach is advantageous for two reasons: (i) It confers207

interpretability in the sense that the underlying symmetry can be directly read off from the M1,M2208

which is ultimately learnt by the bandit outer loop, (ii) A bandit algorithm over (M1,M2) performs209

global optimization and avoids the potential pitfalls of using gradient descent that could get stuck in210

local optima.211

Linear Thompson Sampling (LinTS)-based bandit optimization algorithm: Observe that although212

the space of matrices (M1,M2) guaranteed by Theorem 4 is discrete, it is still an exponentially213

large set. To enable efficient search over this set, we resort to using the linear parametric Thompson214

sampling algorithm (LinTS) [16]. In this strategy, whose pseudo code appears in Algorithm 1, each215

possible pair of matrices (M1,M2), denoting an arm of the bandit, is represented uniquely by a216

binary feature vector of an appropriate dimension d (described in detail below). The reward from217

playing an arm with feature vector a (which is the negative loss after optimizing for ϕ using SGD) is218

assumed to be linear in a with added zero-mean noise, i.e., ∃µ⋆ ∈ Rd such that the expected reward219

upon playing a is a⊤µ⋆. LinTS maintains and iteratively updates a (Gaussian) probability distribution220

(lines 9, 12 and 13) over the unknown reward model µ⋆, and explores the arm space by sampling221

from this probability distribution in each round (line 7).222

Using LinTS for exploring across (M1,M2) is advantageous for several reasons. The chief one is that223

even though the arm set of binary vectors, representing all possible M1,M2 matrices, is exponentially224

large (of cardinality O(3 · 2n)), finding the arm maximizing the reward for a sampled vector µ (line225

8) is a constant-time operation. Another reason to prefer LinTS as a search strategy is that it enjoys a226

rigorous guarantee on the probability of error in finding the best arm in a true linear model, as we227

show in Theorem 6 below.228

Features for bandit arms: To specify the feature vector for each bandit arm, we employ one-hot229

encoding to represent the general subgroup category in the order given as, locally symmetric, dihedral,230

and cyclic respectively. An n-dimensional vector is utilized to represent the corresponding indices,231
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Algorithm 1: Linear Parametric Thompson Sampling for Subgroup Discovery

1 Initialize: A ⊂ {0, 1}d (arm set: binary feature vectors representing each pair of matrices
(M1,M2)),

2 B ← Id (prior covariance),
3 f ← 0 ∈ Rd, µ̂← 0 ∈ Rd (prior mean),
4 ν > 0 (variance inflation parameter),
5 T (time horizon).
6 for t ∈

{
1, 2, . . . , T

}
do

7 Sample µ independently from N
(
µ̂, ν2B−1

)
8 a← argmaxa′∈A µ

⊤a′

9 B ← B + aa⊤

10 Fix matrices M1,M2 in the architecture as per a, and run SGD over ϕ with loss function

L(ϕ) = 1
m

m∑
u=1

ℓ
(
y(u), (ϕ ◦M2 ◦ ρ ◦M1)

(
x(u)

))
to obtain ϕ̃

11 Set reward from arm a: γ ← −L(ϕ̃)
12 f ← f + aγ
13 µ̂← B−1f
14 end
15 return AT = argmaxa∈A a

⊤µ̂ (best arm for the estimated linear model)

where the indices pertaining to the subgroup category are set to 1, while the remaining indices are232

set to 0. Subsequently, this vector can be concatenated with a one-hot encoded representation of233

the subgroup category. For example, with n = 10, G = ZI , and I = {3, 5, 6, 8} the overall feature234

vector is given as follows:235

a = [0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1]T .

The first n indices (in blue) above correspond to the actual indices, while the last three indices (in236

red) indicate the respective subgroup type.237

Our next result is a performance guarantee for the LinTS algorithm (Algorithm 1), showing a bound238

on its probability of misidentifying the optimal arm in a linear reward model.239

Theorem 6 (Error probability bound for LinTS). Let the set of arms A ⊂ Rd be finite. Suppose that240

the reward from playing an arm a ∈ A at any iteration, conditioned on the past, is sub-Gaussian241

with mean3 a⊤µ⋆. After T iterations, let the guessed best arm AT be drawn from the empirical242

distribution of all arms played in the T rounds, i.e., P[AT = a] = 1
T

∑T
t=1 1{a(t) = a} where a(t)243

denotes the arm played in iteration t. Then,244

P[AT ̸= a⋆] ≤ c log(T )

T
,

where c ≡ c (A, µ⋆, ν) is a quantity that depends on the problem instance (A, µ⋆) and algorithm245

parameter (ν).246

Note that the rule for guessing the best arm AT at the end of the time horizon is slightly different247

compared to that of Algorithm 1[line 15]. This result is derived by appealing to a standard reduction248

between cumulative regret and simple regret for the empirical distribution-based guessing rule [17].249

This is then combined with a recent logarithmic bound for the cumulative regret for LinTS [18] on250

one hand, along with an inequality relating simple regret to the probability of misidentifying the best251

arm on the other, to obtain the result (the explicit form of c appears in the appendix). We are unaware252

of any prior result that bounds the identification error probability of linear parametric Thompson253

sampling, so this result may be of independent interest.254

Alternative optimization algorithms: Instead of linear Thompson sampling and gradient descent,255

one could choose a variety of methods to optimize the unified architecture across the functions256

M1,M2 and ϕ, depending on practical considerations. We have already mentioned the possibility257

3A random variable X is said to be sub-Gaussian with mean β if E[et(X−β)] ≤ et
2/2.

7



of using gradient-based optimization jointly across all three functions. On the other end, one can258

employ global optimization methods such as Bayesian optimization [19] for the continuous space259

of ϕ, along with multi-armed bandits for M1,M2 as we have done here. Of course, even the design260

of adaptive discrete sampling algorithms for finding the best M1,M2 is open to a wide variety of261

possibilities, including best arm identification algorithms for linear bandits [20], simulated annealing262

[21] and evolutionary algorithms [22], to name just a few.263

3 Discussion264

The work introduced by [23] can be considered as a specific instance of our work, when ρ is an265

identity function, in which the resulting architecture is a composition of an Sn(n−1)-invariant function266

and a linear transformation. In this section, we formally analyze the limitations associated with such267

an approach and establish the non-realizability of Zk-invariant functions using Sk-invariant functions268

and a linear transformation for k ≥ 3.269

Theorem 7. Consider the following set of functions, for k ≥ 3:270

Ak =
{
ϕ ◦M

∣∣M is linear transformation from Rk to Rk and ϕ is Sk − invariant function
}
.

There exists a Zk-invariant function ψ such that ψ /∈ Ak.271

Proof. (Sketch) We show the non-realizability of a Zk-invariant function which has a unique value for272

each orbit. We have,
∣∣∣OZk

(x)
∣∣∣ ≤ k. Suppose ψ = ϕ ◦M , then M has to be invertible. Then, ∃x̃273

such that
∣∣∣OSk

(Mx̃)
∣∣∣ = k!, which leads to a contradiction.274

We now conjecture a similar result for Zk-invariant functions for n ≥ k ≥ 3.275

Conjecture 8. Consider the following set of functions, for n ≥ 3 and k ≤ n,276

An =
{
ϕ ◦M

∣∣M is a linear transformation and ϕ is Sn − invariant function
}

Then, ∃ a Zk-invariant function ψ such that ψ /∈ An.277

By employing tensor-valued functions as in Theorem 1, we gain additional flexibility, allowing us to278

overcome the above limitations.279

Canonical form. The proposed architecture utilizes a common ϕ i.e., an Sn(n−1)-invariant network,280

while the work proposed in [23] requires ϕ be modified depending on the subgroup type. Moreover,281

our framework yields a canonical form for our overall architecture, as illustrated for the ZI subgroup,282

given as:283

(ϕ ◦M2 ◦ ρ ◦M1) (x) = µ

(∑
il∈I

η
(
xilxτ(il)

)
+ C1η (0)

)
,

where C1 is a constant, and µ, η denote specific functions. This follows from the canonical form of ϕ284

as proved in [3]. Similar results can be obtained for SI and DI subgroups. This allows for a simple285

implementation of our architecture for various applications.286

Handling non-divisors of n. We emphasize that the work proposed by [23] for learning ZI (or DI)287

symmetries is applicable only when k|n. In contrast, our framework allows for the discovery of288

subgroups of type ZI (or DI) for any |I
∣∣ = k ≤ n, thus allowing a larger class of subgroups.289

4 Experiments290

We assess the performance of our proposed method in two representative tasks that have been291

considered in previous related work [4, 3, 23], one on synthetically generated data (polynomial292

regression) and the other on a real-world image dataset (image-digit sum).293

4.1 Polynomial Regression294

In this task, we conduct the model training to learn a G-invariant polynomial as studied in [4]. For295

example, with n = 5, k = 4; f(x) = x1x2x3x4 + x5 is an S4-invariant polynomial function. Note296
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Task G Accuracy
Polynomial Regression ZI 100
Polynomial Regression DI 100
Image-Digit Sum SI 100

Table (1.a): Accuracy (%)

G ZI(5) ZI(7) DI(5) DI(7)
ZI 4.2 6.1 8.2 15.2
DI 4.7 7.9 6.3 10.1
SI 11.7 18.5 21.3 34.3
M +H-INV 12.3 - 23.2 -
SGD 14.4 17.7 26.5 34.4

Table (1.b): MAE (×10−2)

Table (1): (a) Estimation accuracy (top 3) for subgroup discovery in polynomial regression and image-
digit sum tasks. (b) Mean absolute error (×10−2) for the regression task with ZI and DI subgroups.
The cardinality (k = |I|) of the index set is given in braces. The first three rows display the top 3
bandit arm subgroups, with the actual subgroup results highlighted in bold. The M +H-INV (only
applicable for k|n) represents the subgroup discovery method proposed by [23], which incorporates a
composite of linear transformations and an H-invariant network. Here, H ≤ Sn is dependent on the
underlying subgroup. The last row represents the proposed architecture entirely trained with SGD.

that we also study numerous polynomials of various degrees and give detailed definitions of the297

polynomials in the supplementary section. To examine the generalization abilities of the proposed298

method we use only 64 randomly generated points in [0, 1] for training, whereas use 480 and 4800299

points for validation and test sets respectively.300

4.2 Image-Digit Sum301

The goal of this task is to learn the function representing the sum of digit labels of k (out of n) images.302

An input is a set of n images of dimension 28× 28 taken from MNISTm dataset ([24]). Using the303

proposed bandit setting, we discover the underlying subgroup (in this case SI). Note that, xi is an304

image (or 2D matrix), instead of scalar element.305

4.3 Results306

Table (1.a) presents the accuracies achieved in subgroup discovery tasks for image-digit sum (SI)307

and polynomial regression (ZI and DI). The reported accuracies correspond to different values308

of k within the range [n], where n = 10, and are based on randomly selected index sets I. These309

accuracies indicate the successful identification of the underlying subgroup within the top 3 bandit310

arms, as determined by the final µ̂. The training process achieves this outcome within T = O(n)311

iterations.312

For the polynomial regression task, we also provide the mean absolute error (MAE) values for the313

top 3 bandit arms obtained. Notably, the MAE corresponding to the actual subgroup is the lowest,314

indicating successful discovery of the actual subgroup within the top 3. It is worth mentioning that315

the loss values observed for ZI and DI subgroups are relatively close, as the only additional group316

symmetries are the reflections. In addition, we consider the proposed architecture entirely trained317

with SGD. Our results consistently demonstrate a significant performance improvement over the318

SGD method across all investigated subgroups in the polynomial regression tasks. Furthermore, we319

compare our approach with the subgroup discovery method proposed by [23], which combines linear320

transformations and an invariant network specifically designed for each subgroup type.

Figure 2: Visualization of the reference (bandit) M1 (a) and M2 (b) matrices, as well as those (c, d)
obtained through training our method entirely using SGD for the task of polynomial regression of
ZI-invariant function, with n = 10 and I = {0, 2, 3, 6, 7}.

321
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4.4 Interpretability322

Bandit sampling inherently yields interpretable outcomes, and an illustrative example (M1,M2) of323

this is demonstrated in Figure 2 (a, b). Conversely, training our method solely using SGD results in324

matrices that lack clear characterization of the underlying subgroup, as depicted in Figure 2 (c, d).325

4.5 Limitations and Conclusion326

This work introduces a novel framework for the discovery of discrete symmetry groups. We employ327

neural architectures trained using a combination of gradient descent and bandit sampling, resulting328

in interpretable outcomes. Through experiments on both synthetic and real-world datasets, we329

demonstrate the effectiveness of our approach. It is important to note that this work primarily focuses330

on theoretical aspects and serves as a proof of concept. In the future, we plan to explore similar331

approaches for addressing continuous groups and their corresponding applications.332
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5 Appendix333

5.1 Multi-Armed Bandits334

The Multi-Armed Bandit (MAB) framework is a classical approach for sequential decision-making335

problems, in which an agent A selects actions (arms) to minimize the total regret given by RT =336

Tλ∗ − E
[∑T

t=1Rt

]
where λ∗ is the mean reward of the optimal arm.337

Thompson sampling is a Bayesian approach to the multi-armed bandit problem. It works by sampling338

from a posterior distribution over the expected rewards of each arm, and then selecting the arm with339

the highest sampled reward. The posterior distribution is updated after each round of play, based on340

the observed rewards. In this setting, each arm (action) is associated with a context or feature vector x,341

and the goal is to learn a linear model that predicts the expected reward for each arm given its context.342

Let Xt be the context vector at time t, At be the chosen arm at time t, and Rt be the observed reward343

at time t. The algorithm assumes a prior distribution over the model parameters µ (e.g., multivariate344

Gaussian distribution). At each iteration, Thompson Sampling samples a parameter vector µ from345

the posterior distribution. Then, it estimates the expected reward for each arm by computing the346

inner product between the sampled µ and the corresponding context vector x. The arm with the347

highest estimated reward is chosen and pulled. After observing the reward, the posterior distribution348

is updated using Bayesian inference to obtain a new posterior distribution, taking into account the349

new data. This update process is typically performed using conjugate priors or approximate methods350

like Markov Chain Monte Carlo (MCMC) or variational inference. The algorithm continues to update351

the posterior distribution and select arms based on the sampled parameters, enabling it to learn the352

optimal policy in a contextual bandit setting.353

Thompson Sampling has been proven to be asymptotically optimal, meaning that as T → ∞, the354

regret of the algorithm is bounded by a logarithmic function of T . Formally, it has been shown355

that lim
T→∞

RT

T = 0, where RT represents the regret after T rounds. This result guarantees that over356

time, Thompson Sampling converges to the optimal arm and achieves maximum total reward. The357

logarithmic regret bound demonstrates the efficiency of the algorithm in balancing exploration and358

exploitation, leading to near-optimal performance in the long run.359

5.2 Additional Experiments360

Table 5: Estimation Accuracy (%)
Task G Accuracy
Convex Area DI 100
SI (4) SI 100

Table 5 presents the accuracies (top 3) achieved in subgroup discovery tasks on two tasks: (i) convex361

quadrangle area estimation. (ii) SI-invariant polynomial regression. The cardinality (k = |I|) of the362

index set is given in braces.363

Convex area estimation. In this task, we estimate the area of convex quadrilaterals which are invariant364

to cyclic shifts and reflections of the input coordinates, i.e., a DI-invariant function (|I| = 4). The365

input is the (x, y) coordinates of the four points of the quadrilateral lying in R4×2. The training366

data consists of 256 examples (randomly generated convex quadrangles with their areas), while the367

validation dataset contains 1024 examples. Note that, the coordinates are randomly sampled from368

[0, 2] and the area takes value in (0, 1] respectively.369

Polynomial regression. Here, we consider SI-invariant polynomial regression task. The training370

dataset consists of 64 randomly generated data points in [0, 1], whereas 480 points were used for the371

validation set.372

For all our experiments, we observe the subgroup discovery in O(n) iterations. At each iteration, we373

run the model for 400 epochs (3 for image-digit sum) with batch size of 16 and decaying learning rate374

schedule on NVIDIA A6000 GPU’s. We report the accuracy obtained across 5 trails with different375

index set I .376
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Table 6: Definition of Polynomials
INVARIANCE POLYNOMIAL
SI (4) x1x2x3x4 + x5
ZI (5) x1x

2
2 + x2x

2
3 + x3x

2
6 + x6x

2
7 + x7x

2
1

ZI (7) x1x
2
2 + x2x

2
3 + x3x

2
6 + x6x

2
7 + x7x

2
9 + x9x

2
10 + x10x

2
1

DI (5) x1x
2
2 + x2x

2
3 + x3x

2
6 + x6x

2
7 + x7x

2
1 + x1x

2
7 + x7x

2
6 + x6x

2
3 + x3x

2
2 + x2x

2
1

DI (7) x1x
2
2 + x2x

2
3 + x3x

2
6 + x6x

2
7 + x7x

2
9 + x9x

2
10 + x10x

2
1 + x1x

2
10 + ...+ x2x

2
1

Table (6): The exact definitions of the polynomials used in experiments is given in Table 6. For ZI377

and DI the input is a vector in [0, 1]10 given as; x = [x1, x2, ..., x10] whereas for SI it is a vector378

in [0, 1]5 given as; x = [x1, x2, ..., x5]. In this example, the index set I is chosen to be [1, 2, 3, 4],379

[1, 2, 3, 6, 7], and [1, 2, 3, 6, 7, 9, 10] respectively.380

381

Proposition 1 (Cayley’s Theorem). Let G be a group, and let H be a subgroup. Let G/H be the set382

of left cosets of H in G. Let N be the normal core of H in G, defined to be the intersection of the383

conjugates of H in G. Then the quotient group G/N is isomorphic to a subgroup of Sym(G/H).384

More specifically, it states that every group G is isomorphic to a subgroup of the symmetric group.385

6 Proof of Theorem 1386

Theorem 1. Let ψ : [0, 1]k → R be Zk-invariant. There exists an Sk-invariant function ϕ : Rk → R387

such that388

ψ = ϕ ◦ ρ, (1)
where389

ρ : [x1, x2, . . . xk]
T 7→ [(x1, x2), (x2, x3), . . . , (xk−1, xk), (xk, x1)]

T . (2)

Proof. Step 1: First, we show that the ρ : X → Rk is an injective function, where X = [0, 1]k.390

Suppose ρ(x) = ρ(y), for some x = [x1, x2, . . . xk]
T and y = [y1, y2, . . . yk]

T . Then,391

[(x1, x2), (x2, x3), . . . , (xk, x1)]
T = [(y1, y2), (y2, y3), . . . , (yk, y1)]

T , (8)

thus,392

(x1, x2) = (y1, y2), (x2, x3) = (y2, y3), . . . , (xk−1, xk) = (yk−1, yk), (xk, x1) = (yk, y1). (9)

Thus, we get, xi = yi, ∀i ∈ [k]. Hence, ρ is injective.393

In addition, ρ−1 : ρ(X)→ X is given by394

ρ−1
(
[(x1, x2), (x2, x3), . . . (xk, x1)]

T
)
= [x1, x2, . . . xk]

T (10)

Step 2: It is obvious to see that ρ is a Zk-equivariant function, i.e.,395

ρ(h · x) = h · ρ(x), ∀h ∈ Zk (11)

Step 3: We now show that, for any g ∈ Sk, g · ρ(x) ∈ Im(ρ) if and only if g ∈ Zk. In other words,396

only cyclic shifts of any vector ρ(x) lie in the image of ρ.397

From Step 2, we get that, if g ∈ Zk, then g · ρ(x) = ρ(g · x). Thus, g · ρ(x) ∈ Im(ρ).398

Suppose g · ρ(x) ∈ Im(ρ) for some g ∈ Sk. Since ρ(x) ∈ Im(ρ), we have399

ρ(x) = [(x1, x2), (x2, x3), . . . (xk, x1)]
T

g · ρ(x) = [(xg(1), xτ(g(1))), (xg(2), xτ(g(2))), . . . (xg(k), xτ(g(k)))]
T

ρ−1(g · ρ(x)) = [xg(1), xg(2), . . . xg(k)]
T (g · ρ(x) ∈ Im(ρ) and applying (10))

ρ(ρ−1(g · ρ(x))) = [(xg(1), xg(2)), (xg(2), xg(3)), . . . (xg(k), xg(1))]
T

= g · ρ(x) (12)

where τ is cyclic shift operator defined as τ(j) = (j mod k) + 1. Thus,400

g(2) = τ(g(1)), g(3) = τ(g(2)) . . . . . . g(1) = τ(g(k)) (13)

Hence, g is a cyclic shift, i.e., g ∈ Zk401
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Step 4: Claim: The following map is injective:402

OZk
(x) 7→ OSk

(ρ(x)) (14)

First we will show that, this map is well-defined. Suppose, y ∈ OZk
(x), then OZk

(y) = OZk
(x) and403

y = h · x for some h ∈ Zk.404

=⇒ OSk
(ρ(y)) = OSk

(ρ(h · x))
= OSk

(h · ρ(x)) (from step 2)
= OSk

(ρ(x)) (from the definition of orbit). (15)

Hence, the map is well-defined.405

Suppose, OSk
(ρ(x)) = OSk

(ρ(y)) for some x, y ∈ [0, 1]k, then406

ρ(y) ∈ OSk
(ρ(x)) (from the definition of orbit)

ρ(y) = g · ρ(x) (for some g ∈ Sk)

g · ρ(x) ∈ Im (ρ)

g ∈ Zk (from step 3)
ρ(y) = g · ρ(x) = ρ (g · x) (from step 2)
y = g · x (from step 1)
y ∈ OZk

(x)

OZk
(y) = OZk

(x). (16)

This implies that each OZk
(x) orbit is uniquely mapped to OSk

(ρ(x)). From this, it follows that by407

defining the Sk-invariant function ϕ to take the same value across any orbit of the form OSk
(ρ(x)) as408

ψ does across the orbit OZk
(x) (and an arbitrary value across orbits not of the form OSk

(ρ(x))), we409

obtain the result.410

7 Proof of Theorem 4411

Proof. We will prove the result for ZI-invariant function (part (b)). Similar steps hold for other412

variants. As stated in Theorem. 1, any Zk-invariant function ψ can be written as a composition of an413

Sk-invariant function and a specific non-linear function which is defined in (2). If we apply canonical414

form for Sk-invariant function as given by [3], we get,415

ψ(x) = f1

∑
i∈[k]

f2
(
xi, xτ(i)

) , (17)

for some functions f1 and f2.416

Similarly any ZI-invariant function ψ can be written as,417

ψ(x) = f1

(∑
i∈I

f2
(
xi, xτ(i)

))
, (18)

Thus, the goal is show that, the function composition ϕ ◦M2 ◦ ρ ◦M1 has an equivalent form, for418

appropriately chosen M1 and M2. With M1 chosen as in (3), we get,419

(M1x) [i] =

{
xi
0

if i ∈ I (19)

Then applying the function ρ, we get that {(xi, xj) | i, j ∈ I, i ̸= j} will be the set of non-zero420

elements of the vector (ρ ◦M1) (x).421

If we choose M2 as stated in (5) for ZI-invariant function, we obtain that
{
(xi, xτ(i)) | i ∈ I

}
will422

be the set of non-zero elements of the vector (M2 ◦ ρ ◦M1) (x). Then, applying canonical form for423

Sn(n−1)-invariant function as given by [3], we get,424

(ϕ ◦M2 ◦ ρ ◦M1) (x) = f3

(∑
i∈I

f4
(
xi, xτ(i)

)
+ Lf4(0)

)
, (20)
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where L is constant and f3 and f4 are some functions. We observe that (18) and (20) have an425

equivalent form up to a bias term, which can subsumed in f1 and f2. Thus, we conclude that any426

ZI-invariant function can be represented as a function composition of the form ϕ ◦M2 ◦ ρ ◦M1.427

Remark 1. We provide the missing details of Theorem 4, elucidating the function composition428

ϕ◦M2 ◦ρ◦M1. In this composition, the linear transformation M1 plays a crucial role in selecting the429

relevant indices, associated with the index set I, where the underlying subgroup operates. However,430

the remaining indices have to be passed to ϕ unchanged, similar to the results presented in [23].431

Hence, ϕ is an Sn(n−1)-invariant function, where the invariance pertains to the appropriate n(n− 1)
elements obtained from M2 ◦ ρ ◦M1, while excluding the remaining indices. This can be expressed
as follows:

ψ(x) = ϕ

([
(M2 ◦ ρ ◦M1) (x)
(I −M1) (x)

])
.

Here, Sn(n−1) acts upon the first n(n− 1) elements (out of the total n(n− 1) + n = n2 elements)432

and I ∈ Rn×n is the identity matrix.433

8 Proof of Theorem 5434

Theorem 5 (Invariance to product groups). Let [n] =
L⋃

j=1

Ij be a partition of [n], Gi ∈435

{SIj , DIj ,ZIj},∀j ∈ [L] and G = G1 × G2 × · · ·GL such that no two groups Gi, Gj are436

isomorphic. Let ψ be a G-invariant function, then there exists an Sl-invariant function ϕ and a437

specific tensor-valued function ρ, such that,438

ψ = ϕ ◦ ρ. (7)

Proof. We provide the proof by example. Suppose [n] = I1 ∪ I2 is the partition, where I1 =439

{1, 2 . . . , k} and I2 = {k + 1, k + 2 . . . , n} and G = ZI1 ×DI2 .440

Then appropriate ρ function is given by,441

ρ : [x1, x2, . . . , xn]
T 7→ [(x1, x2), (x2, x3), . . . , (xk, x1),

(xk+1, xk+2), (xk+2, xk+3), . . . , (xn, xk+1),

(xk+1, xk+2), (xk+2, xk+3), . . . (xn, xk+1)]
T (21)

We claim that the ρ function is injective and G-equivariant.442

We observe that the following maps (which are components of the function ρ) are injective as well as443

ZI1
-equivariant and DI2

-equivariant respectively.444

[x1, x2, . . . , xk]
T 7→ [(x1, x2), (x2, x3), . . . (xk, x1)]

T (22)
445

[xk+1, xk+2 . . . , xn]
T 7→ [(xk+1, xk+2), (xk+2, xk+3), . . . , (xn, xk+1),

(xk+1, xk+2), (xk+2, xk+3), . . . (xn, xk+1)]
T (23)

Therefore, ρ is injective and G-equivariant. The remaining steps follow a similar approach as the446

proof of Theorem 4.447

9 Proof of Theorem 6448

Theorem 6 (Error probability bound for LinTS). Let the set of arms A ⊂ Rd be finite. Suppose that449

the reward from playing an arm a ∈ A at any iteration, conditioned on the past, is sub-Gaussian450

with mean4 a⊤µ⋆. After T iterations, let the guessed best arm AT be drawn from the empirical451

4A random variable X is said to be sub-Gaussian with mean β if E[et(X−β)] ≤ et
2/2.
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distribution of all arms played in the T rounds, i.e., P[AT = a] = 1
T

∑T
t=1 1{a(t) = a} where a(t)452

denotes the arm played in iteration t. Then,453

P[AT ̸= a⋆] ≤ c log(T )

T
,

where c ≡ c (A, µ⋆, ν) is a quantity that depends on the problem instance (A, µ⋆) and algorithm454

parameter (ν).455

Proof. Let ∆a = maxã∈A ã
⊤µ⋆ − a⊤µ⋆ denote the gap in expected reward of an arm a ∈ A, and456

let a⋆ be the optimal arm (thus ∆a⋆ = 0). Let us define the LinTS algorithm’s cumulative regret457

over T rounds as RT =
∑

a∈A ∆aE [NT (a)], where NT (a) =
∑T

t=1 1
{
a(t) = a

}
denotes the total458

number of times action a is played in the time horizon 1, 2, . . . , T , and its simple regret for the459

guessed best arm after T rounds as Rsimp
T = E [∆AT

].460

By a standard result [17, Prop. 33.2] relating the simple regret to the cumulative regret, when the461

guessed arm AT is drawn according to the empirical distribution of plays as hypothesized, we have462

Rsimp
T =

RT

T
. (24)

We can also bound the simple regret from below as463

Rsimp
T ≥ ∆min P [AT ̸= a⋆] , (25)

where ∆min = min{∆a : a ∈ A,∆a > 0} denotes the gap between the highest and second-highest464

expected reward across the arms.465

It is also separately known [18, Thm. 3] that the cumulative regret of LinTS for a finite action set466

admits the upper bound467

RT ≤ κ log(T ), (26)
where κ ≡ κ (A, µ⋆, ν) is a quantity depending on the actions A, true parameter µ⋆ and algorithm468

parameter ν. Putting together (24), (25) and (26), we obtain469

P [AT ̸= a⋆] ≤ κ log(T )

T∆min
≡ c log(T )

T
,

with c = κ
∆min

, in the form as claimed.470

10 Proof of Theorem 7471

Theorem 7. Consider the following set of functions, for k ≥ 3:472

Ak =
{
ϕ ◦M

∣∣M is linear transformation from Rk to Rk and ϕ is Sk − invariant function
}
.

There exists a Zk-invariant function ψ such that ψ /∈ Ak.473

Proof. Consider a Zk-invariant function ψ defined as follows:474

ψ(x) ̸= ψ(y) if y /∈ OZk
(x). (27)

In other words, the above-defined function assigns a unique value to each orbit. Suppose ψ = ϕ ◦M475

for some Sk-invariant function ϕ and some linear transformation M . Since each orbit OZk
(x) has a476

unique value and
∣∣OZk

(x)
∣∣ ≤ k, we have477 ∣∣ψ−1 ({c})

∣∣ ≤ k for any c ∈ Im(ψ). (28)

The linear transformation M has a trivial null space, indicating that it has full rank and is bijective.
Let z ∈ Im(M) be such that all of its individual scalar components are unique. Such a vector exists
in Im(M) because M is full rank, i.e.,

Mx = z

for some x ∈ Rk. Then,478 ∣∣∣OSk
(z)
∣∣∣ = k!. (29)

Since k ≥ 3, we have k! > k. Thus, from (28), we can see that this leads to a contradiction.479
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